On Zweier generalized difference ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function

  • Bipan Hazarika Rajiv Gandhi University
  • Karan Tamanag Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India

Abstract

Let $\mathbf{M}=(M_k)$ be a Musielak-Orlicz function. In this article, we introduce a new class of ideal convergent sequence spaces defined by Musielak-Orlicz function, using an infinite matrix, and a generalized difference matrix operator $B_{(i)}^{p}$ in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We obtain some relations related to these sequence spaces.

Downloads

Download data is not yet available.

Author Biographies

Bipan Hazarika, Rajiv Gandhi University

Mathematics

Associate Professor

Karan Tamanag, Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli-791109, Arunachal Pradesh, India

Mathematics

Assistant Professor

References

F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55(1)(2003), 136-147.

M. Basarir, M. Kayikçi, On the generalized Bm-Riesz difference sequence spaces and - property, J. Inequa. Appl., Vol 2009(2009), Artcle ID 385029, 18 pages.

M. Basarir, S. Konca, E. E. Kara, Some generalized difference statistically convergent sequence spaces in 2-normed space, J. Inequa. Appl., 2013, 2013:177.

H. Cartan, Filters et ultrafilters, C. R. Acad. Sci. Paris 205 (1937), 777-779.

H. Dutta, Some statistically convergent difference sequence spaces defined over real 2-normed linear space, Appl. Sci., 12(2010), 37-47.

A. Esi, Strongly almost summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Stud. Univ. Babes-Bolyai Math. 57(1)(2012), 75-82

A. Esi and A. SapsÄszoglu, On some lacunary -strong Zweier convergent sequence spaces, Romai J., 8(2)(2012), 61-70.

M. Et, R. Çolak, On generalized difference sequence spaces, Soochow J. Math., 21(4)(1995) 377-386.

M. Et, Y. Altin, B. Choudhary, B. C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Math. Inequa. Appl., 9(2)(2006) 335-342.

B. Hazarika, Some lacunary difference sequence spaces defined by Musielak-Orlicz functions, Asia-European J. Math., 4(4)(2011), 613-626.

B. Hazarika, E. Savas, Some I-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by sequence of Orlicz functions, Math. Comput. Modelling, 54(11-12)(2011), 2986-2998.

B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat, 26(6) (2012), 1265-1274.

B. Hazarika, On fuzzy real valued generalized difference I-convergent sequence spaces defined by Musielak-Orlicz function, J.. Intell. Fuzzy Systems, 25(1)(2013), 9-15.

B. Hazarika, Classes of generalized difference ideal convergent sequences of fuzzy numbers, Ann. Fuzzy Math. Inform., 7(1)(2014), 155-172.

B. Hazarika, K. Tamang and B. K. Singh, Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The J. Math. Comput. Sci., 8(3)(2014), 307-318.

B. Hazarika, Karan Tamang and B. K. Singh, On Paranormed Zweier Ideal Convergent Sequence Spaces Defined By Orlicz Function, J. Egyptian Math. Soc., 22(3)(2014), 413-419.

B. Hazarika, Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function, Iranian J. Math. Sci. Inform., 9(2)(2014), 15-35.

B. Hazarika and Karan Tamang, On Zweier Sequence Spaces and de la Vallée-Poussin mean of order and some geometric properties, Bol. Soc. Port. Mat., 34(2)(2016), 189-195 (in press).

Y. Fadile Karababa and A. Esi, On some strong Zweier convergent sequence spaces, Acta Universitatis Apulensis,29(2012), 9-15.

V. A. Khan and Q. M. D. Lohani, Some new difference sequence spaces defined by Musielak-Orlocz function, Thai J. Math., 6(1) (2008) 215-223.

V. A. Khan, K. Ebadullah, A. Esi, N. Khan, M. Shafiq, On Paranorm Zweier I-convergent sequences spaces, Inter. J. Analysis, Vol. 2013 (2013), Article ID 613501, 6 pages.

V.A.Khan, K. Ebadullah, A. Esi and M. Shafiq, On some Zweier I-convergent sequence spaces defined by a modulus function, Afrika. Mat. DOI 10.1007/s13370-013-0186-y (2013).

H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981)169-176.

P. Kostyrko, T. Salát, and W. Wilczynski, I-convergence, Real Analysis Exchange, 26(2)(2000-2001),669-686.

M.A. Krasnoselski, Y.B. Rutitsky, Convex Functions and Orlicz Functions, P. Noordhoff, Groningen, Netherlands, 1961.

K Lindberg, On subspaces of Orlicz sequence spaces, Studia Math., 45(1973) 119-146.

J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971) 379-390.

M. Mursaleen, M. A. Khan, Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio. Math., 32 (1999) 145-150.

H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512.

F. Nuray and William H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl., 245(2000), 513-527.

S. D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994) 419-428.

W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973) 973-978.

M. Sengönül, On The Zweier Sequence Space. Demonstratio Math. Vol.XL No. (1)(2007), 181-196.

B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Inter. J. Sci. Tech., 1(1)(2006), 11-14.

B.C. Tripathy, A. Esi, B. K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math; 31(2005),333-340.

B. C. Tripathy, B. Hazarika, Paranorm I-convergent sequence spaces, Math. Slovaca, 59(4) (2009) 485-494.

B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sinica, 27(1) (2011) 149-154.

B.C. Tripathy, M. Et, Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J. Anal. Appl., 3(1)(2003) 175-192.

Published
2016-01-16
Section
Articles