Existence and multiplicity of $a$-harmonic solutions for a Steklov problem with variable exponents
Résumé
Using variational methods, we prove in a different cases the existence and multiplicity of $a$-harmonic solutions for the following elleptic problem:\begin{equation*}\begin{gathered}div(a(x, \nabla u))=0, \quad \text{in }\Omega, \\a(x, \nabla u).\nu=f(x,u), \quad \text{on } \partial\Omega,\end{gathered}\end{equation*} where $\Omega\subset\mathbb{R}^N(N \geq 2)$ is a bounded domain ofsmooth boundary $\partial\Omega$ and $\nu$ is the outward normalvector on $\partial\Omega$. $f: \partial\Omega\times \mathbb{R} \rightarrow \mathbb{R},$ $a: \overline{\Omega}\times \mathbb{R}^{N} \rightarrow\mathbb{R}^{N},$ are fulfilling appropriate conditions.Téléchargements
Les données sur le téléchargement ne sont pas encore disponible.
Publiée
2018-04-01
Numéro
Rubrique
Articles
Copyright (c) 2017 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).