The q-difference operator associated with the multivalent function bounded by conical sections

Resumen

In this paper we obtain some inclusion relations of k - starlike functions, k - uniformly convex functions and quasi-convex functions. Furthermore, we obtain coe¢ cient bounds for some subclasses of fractional q-derivative multivalent functions together with generalized Ruscheweyh derivative.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Basem Frasin, Al al-Bayt Unversity

Prof. B.A. Frasin

            Faculty of Science

        Department of Mathematics

       

Citas

Ali, R. M., Ravichandran, V and Seenivasagan, V.,Coefficient bounds for p-valent functions, Appl. Math. Comput., 187, no. 1, 35–46 (2007).

Al-Kharsani, H. A., Multiplier transformations and k-uniformly p-valent starlike functions, Gen. Math. 17, no. 1, 13–22, (2009).

Al-Kharsani, v and Al-Hajiry, S. S., Subordination results for the family of uniformly convex p-valent functions, J. Inequal. Pure Appl. Math. 7, no.1, Article 20, 11 pp, (2006), (electronic).

Eenigenburg, P. J., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, in General Inequalities 3, 64 of International Series of Numerical Mathematics, 339–348, (1983), Birkhauser, Basel, Switzerland.

Gasper, G. and Rahman, M., Basic Hypergeometric series, Cambridge University Press, Cambridge. (2004).

Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155, no. 2, 364–370, (1991).

Kanas, S., Alternative characterization of the class k−UCV and related classes of univalent functions, Serdica Math. J., 25, 341–350, (1999).

S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Internat. J. Math. Math. Sci., 38, 2389–2400, (2003).

Kanas, S., Differential subordination related to conic sections, J. Math. Anal. Appl., 317, 650–658, (2006).

Kanas, S., Subordination for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin, 15, 589–598, (2008).

Kanas, S., Norm of pre-Schwarzian derivative for the class of k-uniform convex and k-starlike functions, Appl. Math. Comput, 215, 2275–2282, (2009).

Kanas, S. and Srivastava, H. M., Linear operators associated with k-uniform convex functions, Integral Transforms Spec. Function., 9, 121–132, (2000).

Kanas, S. and Wisniowska, A., Conic regions and k-uniform convexity, II, Zeszyty Nauk.Politech. Rzeszowskiej Mat., 22, 65–78, (1998).

Kanas, S. and Wisniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105, no. 1-2, 327–336, (1999).

Kanas, S. and Wisniowska, A., Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 45, 647–657, (2000).

Kanas, S. and Raducanu, D., Some class of analytic functions related to conic domains, Math. Slovaca 64, no. 5, 1183-1196, (2014).

Keogh, F. R. and Merkes,E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, (1969).

Miller, S. S. and Mocanu, P. T., Differential subordinations and inequalities in the complex plane, J. Differential equations 67, 199-211, (1978).

Prokhorov, D. V. and Szynal, J., Inverse coefficients for ( , )-convex functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35, 125–143, (1981).

Purohit, S.D. and Raina, R.K., Certain subclasses of analytic functions associated with fractional q-calculus operators, Mathematica Scandinavica, 109, no. 1, 55-77, (2011).

Rønning, F., A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 47, 123–134, (1993).

Ma, W. C. and Minda, D. Uniformly convex functions, Ann. Polon. Math. 57, no. 2, 165–175, (1992).

Sim, Y. J., Kwon, O. S., Cho, N. E. and Srivastava, H. M., Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16, no. 1, 387–408, (2012).

Wongsaijai, B and Sukantamala, N., Mapping properties of generalized q-integral operator of p-valent functions involving the Ruscheweyh derivative and the generalized Salagean operator, Acta Universitatis Apulensis, no. 41, 31–50, (2015).

Publicado
2020-10-07
Sección
Articles