On the capitulation of the $2$-ideal classes of the field Q(\sqrt{pq_1q_2}, i) of type (2, 2, 2)

Résumé

We study the capitulation of the 2-ideal classes of the field k =Q(\sqrt{p_1p_2q}, \sqrt{-1}), where p_1\equiv p_2\equiv-q\equiv1 \pmod 4  are different primes, in its three quadratic extensions contained in its absolute genus field k^{*} whenever the 2-class group of $\kk$ is of type $(2, 2, 2)$.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Abdelmalek Azizi, Mohammed First University Sciences Faculty Mathematics Department
Professor at Faculty of scince, Department of Mathematics,
Abdelkader Zekhnini, Mohammed First university Pluridisciplinary Faculty of Nador

Professor at

Pluridisciplinary Faculty of Nador

Department of Mathematics and Informatic

Mohammed Taous, Moulay Ismail University Sciences and Techniques Faculty Mathematics Department
Professor at FST Errachidia, Department of Mathematics
Publiée
2019-03-10
Rubrique
Research Articles