Existence of entropy solutions in Musielak Orlicz spaces via a sequence of penalized equations
Resumo
This paper, is devoted to an existence result of entropy unilateral solutions for the nonlinear parabolic problems with obstacle in Musielak- Orlicz--spaces:
$$ \partial_{t}u + A(u) + H(x,t,u,\nabla u) =f + div(\Phi(x,t,u))$$
and $$ u\geq \zeta \,\,\mbox{a.e. in }\,\,Q_T.$$
Where $A$ is a pseudomonotone operator of Leray-Lions type defined in the inhomogeneous Musielak-Orlicz space $W_{0}^{1,x}L_{\varphi}(Q_{T})$,
$H(x,t,s,\xi)$ and $\phi(x,t,s)$ are only assumed to be Crath\'eodory's functions satisfying only the growth conditions prescribed by Musielak-Orlicz functions $\varphi$ and $\psi$ which inhomogeneous and does not satisfies $\Delta_2$-condition. The data $f$ and $u_{0}$ are still taken in $L^{1}(Q_T)$ and $L^{1}(\Omega)$.
Downloads
Referências
Adams R., Sobolev spaces , New York (NY),Academic Press, (1975).
Aberqi A., Bennouna J., Mekkour M., Redwane H., Nonlinear parabolic inequality with lower order terms , Applicable Analysis, ISSN: 0003-6811 (Print) 1563-504X (Online) Journal homepage: http://www.tandfonline.com/loi/gapa20, (2016).
Ahmed A., Benkirane A., M.S.B. Elemine Vall, Touzani A., Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data, Bol. Soc. Parana. Mat. (3s.) v. 36, 1, 125-150, (2018).
Akdim Y., Bennouna J., Mekkour M., Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities, Electronic Journal of Differential Equations, No.03, 1-25, (2011).
Akdim Y., Bennouna J., Mekkour M., Redwane H., Strongly nonlinear parabolic inequality in Orlicz spaces via a sequence of penalized equations, Afr. Mat. Union, (2014).
Akdim Y., El gorch N., Mekkour M., Existence of renor- malized solutions for p(x)-parabolic equations with three unbounded non- linearities, Bol. Soc. Parana. Mat., (3) 34 , no. 1, 225- 252, (2016).
Azroul E., Redwane H., Rhoudaf M., Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, Port. Math. 66 (1) , 29-63, (2009).
Benkirane A., Bennouna J., Existence of entropy solutions for some nonlinear problems in orlicz spaces, Nonlinear Analysis 54, 85-102, (2001).
Benkirane A., Sidi El Vally M., Some approximation properties in Musielak-Orlicz-Sobolev spaces , Thai. J. Math., 371-381, (2012).
Benkirane A., Sidi El Vally M., Variational inequalities in Musielak-Orlicz-Sobolev spaces , Bull. Belg. Math. Soc. Simon Stevin, 787-811, (2014).
Boccardo L., Orsina L., Porretta A., Some noncoercive parabolic equations with a lower order terms in divergence form, J. Evol. Equ. 3.3 Dedicated to philippe Benilan, 407-418, (2003).
Boccardo L., Dirichlet problems with singular convection terms and applications, J. Differential. Equ., 258 , 2290-2314, (2015).
Boccardo L., Cirmi G. R., W1,1 0 solutions of some unilateral problems, Nonlinear Analysis Series A: Theorie, Methods and Applications, 121 , 447-457, (2015).
Boccardo L. and Murat F., Almost everywhere convergence of the gradients, Nonlinear Anal. 19 (6) 581-597, (1992).
Brezis H., Analyse fonctionnelle, Masson, (1987).
Di Nardo R., Feo F., Guibe O., Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 , no. 2, 161–186, (2011).
Kellou M.A., Benkirane A., Douiri S.M., An inequality of type Poincare in Musielak spaces and applications to some nonlinear elliptic problems with L 1 -data, Complex Variables and Elliptic Equations 60, 1217-1242, (2015).
Landes R., On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect., A89, 217-237, (1981).
Mabdaoui M., Moussa H., Rhoudaf M., Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces, Anal. Math. Phys. DOI 10.1007/s13324-016-0129-5 (2016).
Musielak J., Modular spaces and Orlicz spaces, Lecture Notes in Math., (1983).
Porzio M. M., Existence of solutions for some noncoercive parabolic equations, Discrete Contin. Dyna. Systems, 5.3 553-568, (1999).
Redwane, H., Existence of a solution for a class of nonlinear parabolic systems , Electron. J. Qual. Theory Differ. Equ., 24, , 18pp., (2007).
Simon, J., Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. (4) 146, 65-96, (1987).
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).