A pair of generalized derivations in prime, semiprime rings and in Banach algebras

Abstract

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one of
the following holds:
(1) R is commutative;
(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.
Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.

Downloads

Download data is not yet available.

References

M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42(1-2), 3–8, (2002).

N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math Soc. 46 (5), 999–1005, (2009).

K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196, New York: Marcel Dekker, Inc. (1996).

M. Bresar and M. Mathieu, Derivations mapping into the radical III, J. Funct. Anal. 133 (1), 21–29, (1995).

M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110, 7–16, (1990).

C. L. Chuang, GPI’s having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 723–728, (1988).

V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (6), 1253–1259, (2011).

B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Internat. J. Math. & Math. Sci., Volume 2010, Article ID 646587, 6 pages.

B. Dhara, M. R. Mozumder Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings, Bol. Soc. Paran. Mat., 36(1), 25-36, (2018).

T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime non-associative algebras, Pacific J. Math. 60(1), 49–63, (1975).

C. Faith and Y. Utumi, On a new proof of Litoff’s theorem, Acta Math. Acad. Sci. Hungar. 14 (3-4), 369–371, (1963).

I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, (1969).

B. E. Johnson and A. M. Sinclair, Continuity of derivations and problem of kaplansky, Amer. J. Math., 90(4), 1067–1073, (1968).

N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.

V. K. Kharchenko, Differential identity of prime rings, Algebra and Logic, 17, 155–168, (1978).

B. Kim, Jordan derivations on prime rings and their applications in Banach algebras, Commun. Korean Math. Soc., 28 (3), 535–558, (2013).

B. Kim, On the derivations of semiprime rings and non-commutative Banach algebras, Acta Math. Sinica., 16 (1), 21–28, (2000).

C. Lanski, An engle condition with derivation, Proc. Amer. Mathp. Soc., 183 (3), 731–734, (1993).

T. K. Lee, Semiprime rings with differential identites, Bull. Inst. Math. Acad. Sinica., 20 (1), 27–38, (1992).

T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8), 4057–4073, (1999).

W. S. Martindale III, Prime rings satistying a generalized polynomial identity, J. Algebra., 12, 576–584, (1972).

K. H. Park, On derivations in non-commutative semiprime rings andBanach algebras, Bull. Korean Math. Soc., 42 (4), 671–678, (2005).

M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (9), 1393–1396, (2003).

Sh. Sahebi and V. Rahmani, A note on power values of derivation in prime and semiprime rings, J. Math. Extension., 6 (4), 79–88, (2012).

Sh. Sahebi and V. Rahmani, Derivations as a generalization of Jordan homomorphisms on Lie ideals and non-commutative Banach algebras, Bol. Soc. Mat. Mex., 22 (117), 117–124, (2016).

S. Huang, On generalized derivations of prime and semiprime rings, Taiwanese J. Math. 16 (2), 771–776, (2012).

A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20, 166–170, (1969).

I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129, 260–264, (1955).

M. P. Thomas, The image of a derivation is contained in the radical, Ann. Math., 128 (3), 435–460, (1988).

J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (4), 877–884, (1992).

Published
2020-10-10
Section
Articles