A study on local properties of Fourier series
Abstract
In this paper, a general theorem on the local property of $|A,p_{n};\delta|_{k}$ summability of factored Fourier series has been proved. This new theorem also includes several new and known results.Downloads
References
S. Baron, Local property of absolute summability of Fourier series. Tartu Riikl. ¨Ul. Toimetised Vih. 177, 106–120, (1965).
S. N. Bhatt, An aspect of local property of | R, logn, 1 | summability of the factored Fourier series. Proc. Nat. Inst. Sci. India Part A 26, 69–73, (1960).
H. Bor, On two summability methods. Math. Proc. Cambridge Philos Soc. 97, 147–149, (1985).
H. Bor, Local property of | ¯N , pn |k summability of factored Fourier series. Bull. Inst. Math Acad. Sinica 17, 165–170, (1989).
H. Bor, Multipliers for | ¯N , pn |k summability of Fourier series. Bull. Inst. Math. Acad. Sinica 17, 285-290, (1989).
H. Bor, On the local property of | ¯N , pn |k summability of factored Fourier series. J. Math. Anal. Appl. 163, 220–226, (1992).
H. Bor, On local property of | ¯N , pn; |k summability of factored Fourier series. J. Math. Anal. Appl. 179, 646–649, (1993).
H. Bor, Local properties of Fourier series. Int. J. Math. Math. Sci. 23, 703–709, (2000).
H. Bor, Localization of factored Fourier series. J. Inequal. Pure Appl. Math. 6, Article 40, 5 pp., (2005).
H. Bor, On the absolute summability factors of Fourier series. J. Comput. Anal. Appl. 8, no. 3, 223-227, (2006).
H. Bor, On the localization of factored Fourier series. Acta Univ. Apulensis Math. Inform. 24, 239-245, (2010).
H. Bor, D. Yu and P. Zhou, On local property of absolute summability of factored Fourier series. Filomat 28, no. 8, 1675-1686, (2014).
H. Bor, Some new results on infinite series and Fourier series. Positivity 19, no. 3, 467-473, (2015).
D. Borwein, The nonlocal nature of the summability of Fourier series by certain absolute Riesz methods. Proc. Amer. Math. Soc. 114, 89–94, (1992).
H. C. Chow, On the summability factors of Fourier series. J. London Math. Soc. 16, 215-220, (1941).
T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. 7, 113-141, (1957).
G. H. Hardy, Divergent Series, Oxford University Press, Oxford, (1949).
S. Izumi, Notes on Fourier analysis. VIII. Local properties of Fourier series. Tˆohoku Math. J. (2) 1, 136–143, (1950).
M. Izumi and S. Izumi, Localization problem of the absolute Riesz and absolute N¨orlund summabilities of Fourier series. Canad. J. Math. 22, 615–625, (1970).
K. Matsumoto, Local property of the summability |R, n, 1|. Tˆohoku Math. J. (2) 8, 114–124, (1956).
K. N. Mishra, Multipliers for | ¯N , pn | summability of Fourier series. Bull. Inst. Math. Acad. Sinica 14, 431–438, (1986).
R. Mohanty, On the summability | R, log!, 1 | of a Fourier Series. J. London Math. Soc. 25, 67–72, (1950).
H. S. Ozarslan, A note on | ¯N , pn; |k summability factors. Erc. Unv. J. Inst. Sci and Tech. 16, 95-100, (2000).
H. S. Ozarslan, A note on | ¯N , p n|k summability factors. Soochow J. Math. 27 (1), 45-51, (2001).
H. S. Ozarslan, A note on | ¯N , pn |k summability factors. Int. J. Pure Appl. Math. 13, 485–490, (2004).
H. S. Ozarslan and H. N. Ogduk, Generalizations of two theorems on absolute summability methods. Aust. J. Math. Anal. Appl. 1, Article 13, (2004), 7 pp.
H. S. Ozarslan, On the local properties of factored Fourier series. Proc. Jangjeon Math. Soc. 9 (2), 103-108, (2006).
H. S. Ozarslan, Local properties of factored Fourier series. Int. J. Comp. Appl. Math. 1, 93-96, (2006).
H. Seyhan, On the local property of '− | ¯N , pn; |k summability of factored Fourier series. Bull. Inst. Math. Acad. Sinica 25, 311–316, (1997).
W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34(11), 1547–1557, (2003).
N. Tanovic-Miller, On strong summability. Glas. Mat. Ser. III 14(34), 87–97, (1979).
E. C. Titchmarsh, Theory of Functions, Second Edition, Oxford University Press, London, (1939).
A. Zygmund, Trigonometric Series, Instytut Matematyczny Polskiej Akademi Nauk, Warsaw, (1935).
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).