A class of strongly close-to-convex functions
Abstract
In this paper, we study a class of strongly close-to-convex functions $f(z)$ analytic in the unit disk $\mathbb{U}$ with $f(0)=0,f^{\prime }(0)=1$ satisfying for some convex function $g(z)$ the condition that
\begin{equation*}
\frac{zf^{\prime }(z)}{g(z)}\prec \left( \frac{1+Az}{1+Bz}\right) ^{m}
\end{equation*}%
\begin{equation*}
\left( -1\leq A\leq 1,-1\leq B\leq 1\ \left( A\neq B\right) ,0<m\leq 1;z\in
\mathbb{U}\right) .
\end{equation*}%
We obtain for functions belonging to this class, the coefficient estimates, bounds, certain results based on an integral operator and radius of convexity. We also deduce a number of useful special cases and consequences of the various results which are presented in this paper.
Downloads
References
H.R. Abdel-Gawad and D.K. Thomas, A subclass of close-to-convex functions, Publ. Inst. Math., (Beograd) Nouvelle serie tome, 49 (63), (1991), 61-66.
S.D. Bernardi, New distortion theorems for functions of positive real part and applications to the partial sums of univalent functions, Proc. Amer. Math. Soc., 45 (1), (1974), 113-118.
P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
R.M. Goel and B.S. Mehrok, A subclass of univalent functions, Houstan J. Math., 8 (3), (1982), 343-357.
D.J. Hallenbeck and T.H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function, Boston, Pitman Advanced Publishing Program, 1984.
W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326.
W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin (1992) 157-169, Conf. Proc. Lecture Notes Anal. I. Int. Press, Cambridge, MA, 1994.
T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York/Basel, 2000.
Z.G. Peng, On a subclass of close to convex functions, Acta Math. Scientia, 30 B (5), (2010), 1449-1456.
M.S. Robertson, On the theory of univalent functions, Ann. Math., 37 (2), (1936), 374-408.
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., (Ser.2), 48 (1943) 48-82.
C. Selvaraj, A subclass of close-to-convex functions, Southeast Asian Bull. Math., 28 (2004), 113-123.
J. Soko l, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49(2009), 349-353.
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).