Various contractions in generalized metric space

Abstract

This paper presents a survey that aims to provide a brief study of various contractions and development of fixed point theorems for these contractions in the context of generalized metric space introduced by Branciari.

Downloads

Download data is not yet available.

Author Biographies

Savita Rathee, Maharshi Dayanand University

Department of Mathematics

Kusum Dhingra, Maharshi Dayanand University

Department of Mathematics

Anil Kumar, Govt. College Bahu

Department of Mathematics

References

A. Al-Bsoul, A. Fora and A. Bellour, Some properties of generalized metric space and fixed point theory, Math. Stud., 33(1),85-91, (2010).

A. Fora, A. Bellour, A. AL-Bsoul, Some results in fixed point theory concerning generalized metric spaces, Matematicki Vesnik, 61(3),203-208, (2009).

A. Ninsri, W. Sintunavarat, Fixed point theorems for partial − contractive mappings in generalized metric spaces, Journal of Nonlinear Science and Applications, 9, 83-91, (2016).

A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, IJMMS, 29(9), 531-536, (2002).

A. Branciari, A fixed point theorem of Banach Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57(1-2),31-37, (2000).

A. Azam, M. Arshad, Kannan fixed point theorems on generalized metric spaces, The Journal of Nonlinear Sciences and its Applications, 1(1), 45-48, (2008).

B. K. Lahiri, P. Das, Fixed point of a Ljubomir Ciric quasi contraction mapping in a generalized metric space, Publ. Math. Debrecen,61, (2002).

B. Samet, A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. Journal of Math. Analysis, 3(26),1265-1271, (2009).

B. Samet, Discussion on ”A fixed point theorem of Banach -Caccioppoli type on a class of generalized metric spaces” by A. Branciari, Publ. Math. Debrecen, 76(4),493-494, (2010).

B. Samet, C. Vetro, P. Vetro, Fixed point theorem for − contractive type mappings, Nonlinear Anal., 75, 2154-2165, (2012).

C. M. Chen, Common fixed point theorems in complete generalized metric spaces, Journal of Applied Mathematics, 2012, 14 pages, (2012).

C. Di Bari, P. Vetro, Common fixed points in generalized metric spaces, Appl.Math. Comput., 218, 7322-7325, (2012).

D. P. Shukla, Fixed point theorems in generalized metric spaces, International Journal of Mathematical Archive, 5(8), 21-24, (2014) .

D. W. Boyd, JSW, Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20, 458-464, (1969).

D. Mihet, On Kannan fixed point principle in generalized metric spaces, The Journal of Nonlinear Science and Applications, 2(2), 92-96, (2009).

E. Karapinar, Discussion on − contractions on generalized metric spaces, Abstract and Applied Analysis, 2014, 7 pages, (2014).

G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences, 9(4), 771-779, (1986).

H. Aydi, E. Karapinar and H. Lakzian, Fixed point results on a class of generalized metric spaces, Mathematical Sciences, 6(46), 1-6, (2012).

H. Aydi, E. Karapinar and B. Samet, Fixed points for generalized ( − )-contractions on generalized metric spaces, Journal of Inequalities and Applications, 2014(229), 1-16, (2014).

H. Lakzian, B. Samet, Fixed point for ( − )-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett., 25, 902-906, (2012).

I. R. Sarma, J. M. Rao and S. S. Rao, Contractions over generalized metric space, The Journal of Nonlinear Sciences and Applications, 2(3), 180-182, (2009).

I. M. Erhan, E. Karapinar and T. Sekulic, Fixed points of ( −) contraction on rectangular metric spaces, Fixed Point Theory and Applications, 2013(138), 1-12, (2013).

J. Ahmad, M. Arshad and C. Vetro, On a theorem of Khan in a generalized metric space, International Journal of Analysis, 2013, 6 pages, (2013).

L. Kikina, K. Kikina, Fixed point theorems on generalized metric spaces for mappings in a class of almost - contractions, Demonstratio Mathematica, XLVIII(3), 440-451, (2015).

L. Kikina, K. Kikina, A fixed point theorem in generalized metric spaces, Demonstratio Mathematica, XLVI(1), 181-190, (2013).

L. Kikina, K. Kikina, Fixed points in k complete metric spaces, Demonstratio Mathematica, XLIV(2), 349-357, (2011).

L. Kikina, K. kikina, Fixed points on two generalized metric spaces, Int. Journal of Math. Analysis, 5(30), 1459-1467, (2011).

M. S. Khan, A fixed point theorem for metric spaces, Rendiconti Dell’Istituto di Mathematica Dell’Universita Di Trieste, 8, 69-72, (1976).

M. Abtahi, Fixed point theorems of Ciric-Matkowski type in generalized metric spaces, arXiv:1505.08161v1, 1-6, (2015).

M. Akram, A. A. Siddiqui, A fixed point theorem for A-contractions on a class of generalized metric spaces, Korean J. Math. Sciences, 10(2), 1-5, (2003).

M. Turinici, Functional contractions in local Branciari metric spaces arXiv: 1208.4610V1[math.GN], 1-9, (2012).

M. Arshad, J. Ahmad and E. Karapinar, Some common fixed point results in rectangular metric spaces, International Journal of Analysis, 2013, 7 pages, (2013).

M. Arshad, E. Ameer and E. Karapinar, Generalized contractions with triangular -orbital admissible mapping on Branciari metric spaces Journal of Inequalities and Applications, 2016(63), 1-21, (2016).

M. A. Alghamdi, N. Shahzad and O. Valero, Fixed point theorems in generalized metric spaces with applications to computer sciences, Fixed Point Theory and Applications, 2013(118), 1-20, (2013).

M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(2), 604-608, (1973).

M. Kumar, P. Kumar and S. Kumar, Some common fixed point theorems in generalized metric spaces, Journal of Mathematics,2013, 7 pages, (2013).

M. Kumar, S. Araci and p. Kumam, Fixed point theorems for generalized − expansive mappings in generalized metric spaces, Communications in Mathematics and Applications, 7(3), 227-240, (2016).

M. Kumar, S. Araci, A. Dahiya, A. Rani and P. Singh, Common fixed point for generalized ( − − )-weakly contractive mappings in generalized metric spaces, Global Journal of Pure and Applied Mathematics, 12(4), 3021-3035, (2016).

M. Asadi, E. Karapinar and A. Kumar, − Geraghty contractions on generalized metric spaces, Journal of Inequalities and Applications, 2014(423), 1-21, (2014).

M. Balaiah, A fixed point theorem in generalized metric spaces, International Journal of Scientific and Innovative Mathematical Research, 3(12), 24-26, (2015).

M. Zare, P. Torabian, Fixed points for weak contraction mappings in complete generalized metric spaces, Journal of Mathematical extension, 8(3), 49-58, (2014).

M. Jleli, B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications, 2014(38), (2014).

M. Jleli, E. Karapinar and B. Samet, Further generalization of the Banach Contraction Principle, Journal of Inequalities and Applications, 2014(439), (2014).

N. Cakic, Coincidence and common fixed point theorems for − weakly contractive mappings on generalized metric spaces, Filomat, 27(8), 1415-1423, (2013).

P. Kumam, N. V. Dung, Some remarks on generalized metric spaces of Branciari, Sarajevo Journal of Mathematics, 10(23), 209-219, (2014).

P. Das, L. K. Dey, Porosity of certain classes of operators in generalized metric spaces, Demonstratio Mathematica, XLII(1), 163-174, (2009).

P. Das, A fixed point theorem on a class of generalized metric space, Korean J. of Math. Sci, 9(1), 29-33, (2002).

P. Das, L. K. Dey, A fixed point theorem in a generalized metric space, Soochow Journal of Mathematics, 33(1), 33-39, (2007).

P. Das, L. K. Dey, Fixed point of contractive mappings in generalized metric spaces, Mathematica Slovaca, 59(4), 499-504, (2009).

R. George, Rajgopalan, Common fixed point results for − contractions in rectangular metric spaces, Bulletin of Mathematical Analysis and Applications, 5(1), 44-52, (2013).

S. Banach, Sur les operations dans las ensembles abstraits et leur application aux equations integrales, Find. Math., 3, 133-181, (1922).

S. Moradi, New extensions of Kannan fixed point theorem on complete metric and generalized metric spaces, Int. Journal of Math. Analysis, 5(47), 2313-2320, (2011).

S. Rathee, K. Dhingra, Best proximity point for generalized Geraghty-contractions with MT-condition, International Journal of Computer Applications, 127(8), 8-11, (2015).

S. Rathee, K. Dhingra, MT-proximal contractions and best proximity point theorems, Global Journal of Pure and Applied Mathematics, 11(5), 3239-3248, 2015.

S. Rathee, K. Dhingra and A. Kumar, Existence of common fixed point and best proximity point for generalized nonexpansive type maps in convex metric space, Springerplus, 5(1940), 1-18, (2016).

V. La-Rosa, P. Vetro, Common fixed points for − − contractions in generalized metric spaces, Nonlinear Analysis: Modeling and Control, 19(1), 43-54, (2014).

V. Berinde, Stability of Picard iteration for contractive mappings satisfying an implicit relation , Car. J. Math. 27(1), 13-23, (2011).

V. Berinde, Approximating fixed point of weak contractions using the Picard iteration,Nonlinear Anal. Forum, 9(1), 43-53, (2004).

W. A. Kirk, N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory and Applications, 2013(129), 1-9, (2013).

Z. Kadelburg, S. Radenovic, On generalized metric spaces: a survey, TWMS J. Pure Appl. Math., 5(1), 3-13, (2014).

Z. Kadelburg, S. Radenovic, Fixed point results in generalized metric space without Hausdorff property, Math. Sci., 8(125), 1-8,(2014).

Published
2020-10-10
Section
Articles