Multi-valued fixed point theorem via F- contraction of Nadler type and application to functional and integral equations

Abstract

In this work, using F-contraction of Nadler type, common multi-valued fixed point results in the setting of b-metric space are established. With the assistance of the determined results sufficient conditions for the existence of common solutions to the systems of functional and integral equations are studied.

Downloads

Download data is not yet available.

Author Biographies

Muhammad Shoaib, University of Malakand

Department of Mathematics

Poom Kumam, King Mongkuts University of Technology Thonburi

KMUTT-Fixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed PointLaboratory, Science Laboratory Building, Faculty of Science, King Mongkuts University of TechnologyThonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand,

References

N. A. Assad, W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math., 533-562, 43 (1972).

A. Azam, N. Mehmood, J. Ahmad, J, S. Radenovic, Multivalued fixed point theorems in cone b-metric spaces, Journal of Inequalities and Applications, 582 (2013).

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundamenta. Mathematiae, 133-181, 3 (1922).

Bakhtin, The contraction mapping principle in quasimetric spaces in Functional Analysis, Ul’yanovsk. Gos. Ped. Inst. Ul’yanovsk, 26-37, 30 (1989) (in Russian).

B. S. Choudury and N. Metiya, A fixed point of multivalued -admissible mapping and stability of fixed point sets in metric spaces, Rend. Circ. Mat. Palermo , 43-55, 64 (2015).

Cosentino et.al , Solvability of integrodifferential problems Via fixed point theory in b-metric spaces, Fixed Point Theory Appl.,, Article ID 70, (2015).

Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 263-276, 46(1998).

T. Dosenovic, M. Pavlovic, S. Radenovic, Contractive conditions in bmetric spaces, Vojnotehni?cki glasnik/Military Technical Courier, 65 (4), pp. 851-865.

T. Dosenovic, S. Radenovic, Ansari’s method in generalizations of some results in fixed point theory: Survey, Vojnotehnicki glasnik/Military Technical Courier, 65 (4), pp. 851-865.

R. George, S. Radenovic, K P. Reshma, S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 1005-1013, 8 (2015).

Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mapping satisfying Contractive Conditions of integral type and applications, Fixed Point Theorey Appl., Article ID 64 (2011).

Z. Liu, B. Xu, S. M. Kang, Two fixed point Theorems of mappings satisfying contractive inequalities of integral type, Int. J. Pure. Appl. Math, 85-100, 90 (2014).

S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30(2), 475-488, (1969).

V. Parvaneh, JR. Roshan, S. Radenovic, Existence of tripled coincidence point in ordered b-metric spaces and applications to a system of integral equations, Fixed Point Theory Appl., 30 (2013).

B. Popovic, B, S. Radenovic, S. Shukla, Fixed point results to tvs-cone b-metric spaces. Gulf J. Math. 1, 51-64 (2013).

S. Phiangsungnoen and P. Kumam, Generalized Ulam-Hyers stability and well-posedness for fixed point equation via -admissibility, Journal of Inequalities and Applications, 418 (2014).

M. Sgroi, C. Vetro, Multivalued F-contractions and the solution of certain functional and integral equations, Filomat, 1259-1268, 27 (2013).

D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 94 (2012).

Published
2020-10-10
Section
Articles