Existence and decay of solution to coupled system of viscoelastic wave equations with strong damping in Rn
Résumé
In this paper, we establish a general decay rate properties of solutions for a coupled system of viscoelastic wave equations in IRn under some assumptions on g1; g2 and linear forcing terms. We exploit a density function to introduce weighted spaces for solutions and using an appropriate perturbed energy method. The questions of global existence in the nonlinear cases is also proved in Sobolev spaces using the well known Galerkin method.
Téléchargements
Références
D. Andrade, M. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Meth. Appl. Sci. 35, 417-426, 2012.
A. Beniani, A. Benaissa and Kh. Zennir, Polynomial Decay of Solutions to the Cauchy Problem for a Petrovsky-Petrovsky System in Rn, Acta. Appl. Math. 146, pp. 67-79, 2016.
A. F. Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Acad. Sci. Paris, Ser. I 347, 867-872, 2009.
K. J. Brown and N. M. Stavrakakis, Global bifurcation results for a semilinear elliptic equation on all of Rn, Duke. Math. J. 85, 77-94, 1996.
M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42(4) 1310-1324, 2003.
C. M. Dafermos, H. P. Oquendo, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal. 37, 297-308, 1970.
J. Ferreira and S. A. Messaoudi, On the general decay of a nonlinear viscoelastic plate equation with a strong damping and p(x, t)−-Laplacian, Nonlinear Analysis 104, 40-49, 2014.
M. A. Jorge Silva and T. F. Ma, On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type, IMA Journal of Applied Mathematics. 1-17, 2012.
M. Kafini, Uniforme decay of solutions to Cauchy viscoelastic problems with density, Elec. J. Diff. Equ. 93, 1-9, 2011.
M. Kafini and S. A. Messaoudi, On the uniform decay in viscoelastic problem in Rn, Applied Mathematics and Computation 215, 1161-1169, 2009.
M. Kafini, S. A. Messaoudi and Nasser-eddine Tatar, Decay rate of solutions for a Cauchy viscoelastic evolution equation, Indagationes Mathematicae 22, 103-115, 2011.
N. I. karachalios and N.M Stavrakakis, Existence of global attractor for semilinear dissipative wave equations on Rn, J. Diff. Equ. 157, 183-205, 1999.
N. I. karachalios and N. M. Stavrakakis, Global existence and blow up results for some nonlinear wave equations on Rn, Adv. Dif. Equations. 6 , 155-174, 2011.
J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.
Muhammad I. Mustafa and S. A. Messaoudi, General stability result for viscoelastic wave equations, Journal Of Mathematical Physics 53, 053702, 2012.
Muhammad I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Analysis 13, 452-463, 2012.
J. E. Munoz Rivera and M.G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptotic. Anal. 49 (3), 189-204, 2006.
D. Ouchenane, Kh. Zennir and M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian Mathematical Journal 65, No. 7, 654-669, 2013.
Papadopulos, P. G. Stavrakakies, Global existence and blow-up results for an equations of Kirchhoff type on Rn, Methods in Nolinear Analysis 17, 91-109, 2001.
Perikles G. Papadopoulos, Nikos M. Stavrakakis, Central manifold theory for the generalized equation of Kirchhoff strings on Rn, Nonlinear Analysis 61, 1343-1362, 2005.
M. Reed and B. Simon, Methods of Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979.
F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping, Nonlinear Analysis, 66, 2889-2910, 2007.
Wenjun Liu, Gang Li and Linghui Hong, Decay of solutions for a plate equation with pLaplacian and memory term, Electronic J. Differential Equations 129, 1-5, 2012.
E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II, Monotone Operators, Springer-Verlag, Berlin, 1990.
Kh. Zennir, Growth of Solutions With Positive Initial Energy to System of Degeneratly Damped Wave Equations With Memory, Lobachevskii Journal of Mathematics, Vol. 35, No. 2, pp. 147-156, 2014.
Kh. Zennir, General decay of solutions for damped wave equation of Kirchhoff type with density in Rn, Ann Univ Ferrara, 61, 381-394, 2015.
S. Zitouni and Kh. Zennir, On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces, Rend. Circ. Mat. Palermo, II. Ser, 66(3):337-353, 2016.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).