Infinitely many solutions for a nonlocal elliptic system of $(p_1,\ldots,p_n)$-Kirchhoff type with critical exponent
Abstract
The existence of infinitely many nontrivial solutions for a nonlocal elliptic system of $(p_1,\ldots,p_n)$-Kirchhoff type with critical exponent is investigated. The approach is based on variational methods and critical point theory.
Downloads
References
C. O. Alves, F. S. J. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85–93.
A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc. 348 (1996) 305–330.
G. Autuori, F. Colasuonno, P. Pucci, Blow up at infinity of solutions of polyharmonic Kirch-hoff systems, Complex Var. Elliptic Eqs. 57 (2012) 379–395.
G. Autuori, F. Colasuonno, P. Pucci, Lifespan estimates for solutions of polyharmonic Kirch-hoff systems, Math. Mod. Meth. Appl. Sci. 22 (2012) 1150009 [36 pages].
G. Autuori, F. Colasuonno, P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math. 16 (2014) 1450002 [43 pages].
G. Bonanno, G. D’Aguı, On the Neumann problem for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 358 (2009) 223–228.
G. Bonanno, B. Di Bella, Infinitely many solutions for a fourth-order elastic beam equation, Nonlinear Differ. Equ. Appl. 18 (2011) 357-368.
G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009) 1–20.
G. Bonanno, G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the p-Laplacian, Proc. Royal Soc. Edinburgh 140A (2010) 737–752.
G. Bonanno, G. Molica Bisci, D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Modelling 52 (2010) 152–160.
G. Bonanno, E. Tornatore, Infinitely many solutions for a mixed boundary value problem, Ann. Polon. Math. 99 (2010) 285–293.
P. Candito, Infinitely many solutions to the Neumann problem for elliptic equations involving the p-Laplacian and with discontinuous nonlinearities, Proc. Edin. Math. Soc. 45 (2002) 397–409.
P. Candito, R. Livrea, Infinitely many solutions for a nonlinear Navier boundary value problem involving the p-biharmonic, Studia Univ. ”Babe¸s-Bolyai”, Mathematica, Volume LV, Number 4, December 2010.
B. Cheng, X. Wu, J. Liu, Multiplicity of solutions for nonlocal elliptic system of (p, q)-Kirchhoff type, Abstr. Appl. Anal. 2011 (2011), Article ID 526026, 13 pages.
M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. 30 (1997) 4619–4627.
F. Colasuonno, P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. TMA 74 (2011) 5962–5974.
J. R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013) 877–889.
J. R. Graef, S. Heidarkhani, L. Kong, Infinitely many solutions for systems of Sturm-Liouville boundary value problems, Results. Math. 66 (2014) 327–341.
X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. TMA 70 (2009) 1407–1414.
S. Heidarkhani, Infinitely many solutions for systems of n two-point boundary value Kirchhoff-type problems, Ann. Polon. Math. 107(2) (2013) 133–152.
S. Heidarkhani, J. Henderson, Infinitely many solutions for a perturbed quasilinear two-point boundary value problem, An. Stiint¸. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LXIII, 2017, f. 1, 19 pages.
S. Heidarkhani, M. Karami, Infinitely many solutions for a class of Dirichlet boundary value problems with impulsive effects, Bull. Math. Soc. Sci. Math. Roumanie, Tome 58(106) No. 2, (2015) 167–179.
S. Heidarkhani, A. Salari, Existence of three solutions for impulsive perturbed elastic beam fourth-order equations of Kirchhoff-type, Studia Sci. Math. Hungarica 54(1) (2017) 119–140.
S. Heidarkhani, A. Salari, G. Caristi, Infinitely many solutions for impulsive nonlinear fractional boundary value problems, Adv. Difference Equ. (2016) 2016:196.
E. M. Hssini, Existence of nontrivial solutions for a nonlocal elliptic system of (p, q)-Kirchhoff type with critical exponent, Gen. Math. Notes 24.2 (2014) 18–25.
G. Kirchhoff, Vorlesungen uber mathematische Physik: Mechanik, Teubner, Leipzig (1883).
J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978) 284–346.
K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Eqs. 221 (2006) 246–255.
B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401–410.
B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010) 543–549.
G. Talenti, Some inequalities of Sobolev type on two-dimensional spheres, in: General Inequalities 5 (Oberwolfach 1986), Internat. Schriftenreihe Numer. Math. 80, Birkhauser, Basel (1987) 401–408.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).