Existence results for nonlinear problems with $\varphi$- Laplacian operators and nonlocal boundary conditions
Résumé
Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type
\[
\left\{\begin{array}{lll}
(\varphi(u' ))' = f(t,u,u') & & \\
u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad
\end{array}\right.
\]
where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.
Téléchargements
Références
C. Bereanu and J. Mawhin, Boundary-value problems with non-surjective ϕ-laplacian and one-sided bounded nonlinearity, Advances Differential Equations. 11 (2006), 35-60.
V. Bouchez and J. Mawhin, Boundary value problems for a class of first order quasilinear ordinary differential equations, Portugal. Math. (N.S). 71 (2014), 217-247. https://doi.org/10.4171/PM/1951
D. P. D. Santos, Existence of solutions for some nonlinear problems with boundary value conditions, Abstr. Appl. Anal. https://doi.org/10.1155/2016/5283263
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7
M. del Pino, R. Manasevich and A. Mur'ua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear, Nonlinear Anal. 18 (1992), 79-92. https://doi.org/10.1016/0362-546X(92)90048-J
R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-laplacian-like operators, Differential Equations. 145 (1997), 367-393. https://doi.org/10.1006/jdeq.1998.3425
J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS series No. 40, American Math. Soc., Providence RI, 1979. https://doi.org/10.1090/cbms/040
J. R. Ward Jr, Asymptotic conditions for periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc. 81 (1981), 415-420. https://doi.org/10.1090/S0002-9939-1981-0597653-2
P. Yan, Nonresonance for one-dimensional p-Laplacian with regular restoring, J. Math. Anal. Appl. 285 (2003), 141-154. https://doi.org/10.1016/S0022-247X(03)00383-4
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).