Some remarks on contraction mappings in rectangular b-metric spaces

Resumo

In this paper, we give a short proof for Reich contraction in rectangular b-metric spaces with increased range of the Lipschtzian constants and illustrate this with a suitable example. Our results generalize, improve and complement several ones in the existing literature.

CROSSMARK_Color_horizontal.svg

Downloads

Não há dados estatísticos.

Referências

I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., Ulianowsk Gos. Ped. Inst., 30 (1989), 26-37.

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.

H. S. Ding, M. Imdad, S. Radenovic, J. Vujakovic,On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci. 22(2), (2016), 151-164.

H. S. Ding, V. Ozturk, S. Radenovi´c,On some new fixed point results in b-rectangular metric spaces J. Nonlinear Sci. Appl., 8 (2015), 378–386.

R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60, (1968), 71-76.

Z. D. Mitrovic, On an open problem in rectangular b-metric space, J. Anal., 25, No. 1, (2017), 135-137.

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.

J. R. Roshan, V, Parvaneh, Z. Kadelburg, N. Hussain,New fixed point results in b-rectangular metric spaces, Nonlinear Anal., Model. Control, 21(5), (2016), 614-634.

Publicado
2020-10-11
Seção
Artigos