On the uniform ergodic for α−times integrated semigroups
Abstract
Let $A$ be a generator of an $\alpha-$times integrated semigroup
$(S(t))_{t\geq 0}$. We study the uniform ergodicity of $(S(t))_{t\geq 0}$ and we show that the range of $A$ is closed if and only if $\lambda R(\lambda,A)$ is uniformly ergodic.
Moreover, we obtain that $(S(t))_{t\geq 0}$ is uniformly ergodic if and only if $\alpha=0$. Finally, we get that $\frac{1}{t^{\alpha+1}}\int_{0}^{t}S(s)ds$ converge uniformly for all $\alpha\geq 0$.
Downloads
References
W. Arendt, Vector-valued Laplace Transforms and Cauchy Problems, Israel J. Math, 59 (3), 327-352, (1987).
N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, (1958).
M. Heiber, Laplace transforms and −times integrated semigroups, Forum Math. 3, 595-612, (1991).
U. Krengel, Ergodic theorems. de Gruyter Studies in Mathematics, Berlin, New York, (1985).
M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, 337-340, (1974).
M. Lin, On the uniform ergodic theorem II, Proc. Amer. Math. Soc., 46, 217-225, (1974).
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, (1983).
A. Tajmouati, A. El Bakkali and M. A. Ould Mohamed Baba, Spectral inclusions between -times integrated semigroups and their generators, Boletim da Sociedade Paranaense de Matematica, to appear.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).