Existence results involving fractional Liouville derivative
Resumo
In this paper we investigate the question of existence of nonnegative solution to some fractional liouville equation. Our main tools based on the well known Krasnoselskiis xed point theorem.
Downloads
Referências
Bai Z., Lu H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005) 495–505.
Ben Ali K., Ghanmi A., Kefi K., Existence of Solutions for Fractional Differential Equations with Dirichlet Boundary Conditions, Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 116, pp. 1–11.
Ghanmi A., Horrigue S., Existence Results for Nonlinear Boundary Value Problems, FILOMAT, Vol. 32 No. 2(2018) 609–618.
Ghanmi A., Kratou M., Saoudi K., A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, FILOMAT, Vol. 32 No. 2(2018) 653–669.
Guo D. and Lakshmikantham V., Nonlinear problems in abstract cones, Academic Press, San Diego, (1998).
Krasnoselskii M., Positive solutions of operator equations, Noordhoff, Groningen, 1964.
Leggett R. W., Williams L. R., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (4) (1979) 673–688.
Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
Miller K. S. and Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY, USA, 1993.
Zhao Y. G., Sun S. R., Han Z. L., Li Q. P., The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 2086–2097.
Copyright (c) 2020 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).