Some classes of 3-dimensional Trans-Sasakian manifolds with respect to semi-symmetric metric connection
Abstract
The object of the present paper is to study semi-symmetric metric connection on a 3-dimensional trans-Sasakian manifold. We found the necessary condition under which a vector field on a 3-dimensional trans-Sasakian manifold will be a strict contact vector field. Then, we obtained extended generalized phi-recurrent 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection. Next, a 3-dimensional trans-Sasakian manifold satises the condition ~L.~ S = 0 with respect to semi-symmetric metric connection is studied.
Downloads
References
Amur, K. and Pujar, S. S., On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection, Tensor, N.S., 32, 35-38, (1978).
Basari, A. and Murathan, C., On generalized φ-recurrent kenmotsu manifolds, Sdu Fen Edebiyat Fakultesi Fen Dergisi (E-DERGI), 10 , 91-97, (2008).
Bagewadi, C. S., On totally real submanifolds of a Ka¨hlerian manifold admitting semi-symmetric F-connection, Indian J. Pure. Appl. Math., 13, 528-536, (1982).
Friedmann, A. and Schouten, J. A., U¨ber die Geometrie der halbsymmetrischen Ubertragungen, Math.Z., 21, 211-223, (1924). https://doi.org/10.1007/BF01187468
Hayden, H. A., Subspace of a space with torsion, Proceedings of the London Mathematical Society II Series, 34 , 27-50, (1932). https://doi.org/10.1112/plms/s2-34.1.27
Marrero, J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., 162(4), 77-86. (1992). https://doi.org/10.1007/BF01760000
Prakasha, D. G., On extended generalized φ-recurrent Sasakian manifolds, J. Egyptian Math. Soc., 21(1), 25-31, (2013). https://doi.org/10.1016/j.joems.2012.11.002
Prakasha, D. G., Bagewadi, C. S. and Venkatesha, Conformaly and quasi-conformally conservative curvature tensor on a trans-sasakian manifolds with respect to semi-symmetric metric connection, Diff. Geometry-Dyn. Sys., 10, 263-274, (2007).
Prasad , R. and Srivastava, V., Some results on trans-Sasakian manifold, Matematicki Vesnik, 65(3), 346-352, (2013).
Osserman, R., Curvature in the Eighties, The American mathematical monthly 97 (8), 731-756, (1990). https://doi.org/10.1080/00029890.1990.11995659
Oubina, J. A., New classes of almost contact metric structures, pub. Math. Debrecen, 32, 187-193, (1985).
Ozgur, C., On φ−conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki, 12, 99-106, (2003).
Schouten, J. A., Ricci-Calculus-An Introduction to Tensor Analysis and Geometrical Applications, Springer-Verlag, Berlin-G¨ottingen-Heidelberg, 1954.
Siddiqui, S. A. and Ahsan, Z., Conharmonic curvature tensor and space-time of general relativity, Diff. Geometry-Dyn. Syst., 12, 213-220, (2010).
Sharafuddin, A. and Hussain, S. I., Semi-symmetric metric connections in almost contact manifolds, Tensor, N.S., 30, 133-139, (1976).
Shaikh, A. A. and Hui, S. K., On extended generalized φ-recurrent β-Kenmotsu manifolds, Publications De L'Institut Math'ematique Nouvelle s'erie, tome, 89(103), 77-88, (2011). https://doi.org/10.2298/PIM1103077A
Tarafdar, M. and Bhattacharyya, A., A special type of trans-Sasakian manifolds, Tensor (N.S.), 64(3), 274-281, (2003).
Yano, K., On semi-symmetric metric connection, Revue Roumaine Math. Pures App., 15, 1579-1586, (1970).
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).
Funding data
-
University Grants Commission
Grant numbers F.4-2/2006(BSR)/MA/18- 19/0007