One solution for nonlocal fourth order equations
Abstract
A critical point result for differentiable functionals is exploited in order to prove that a suitable class of fourth-order boundary value problem of Kirchhoff-type possesses at least one weak solution under an asymptotical behavior of the nonlinear datum at zero. Some examples to illustrate the results are given.
Downloads
References
G. A. Afrouzi, A. Hadjian, G. Molica Bisci, Some remarks for one-dimensional mean curvature problems through a local minimization principle, Adv. Nonlinear Anal. 2, 427-441, (2013). https://doi.org/10.1515/anona-2013-0021
C. O. Alves, F. S. J. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl. 49, 85-93, (2005).https://doi.org/10.1016/j.camwa.2005.01.008
G. Autuori, F. Colasuonno, P. Pucci, Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Eqs. 57, 379-395, (2012). https://doi.org/10.1080/17476933.2011.592584
G. Autuori, F. Colasuonno, P. Pucci, Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Mod. Meth. Appl. Sci. 22, 1150009 [36 pages], (2012). https://doi.org/10.1142/S0218202511500096
G. Autuori, F. Colasuonno, P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math. 16, 1450002 [43 pages], (2014). https://doi.org/10.1142/S0219199714500023
J. M. Ball, Stability theory for an extensible beam, J. Differ. Equ. 14, 399-418, (1973). https://doi.org/10.1016/0022-0396(73)90056-9
G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009, 1-20, (2009). https://doi.org/10.1155/2009/670675
A. Cabada, J. A. Cid, L. Sanchez, Positivity and lower and upper solutions for fourth-order boundary value problems, Nonlinear Anal. TMA 67, 1599-1612, (2007). https://doi.org/10.1016/j.na.2006.08.002
P. Candito, R. Livrea, Infinitely many solutions for a nonlinear Navier boundary value problem involving the pbiharmonic, Studia Univ. "Babe¸s-Bolyai", Mathematica, Volume LV, Number 4, December (2010).
M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. TMA 30, 4619-4627, (1997). https://doi.org/10.1016/S0362-546X(97)00169-7
F. Colasuonno, P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. TMA 74, 5962-5974, (2011). https://doi.org/10.1016/j.na.2011.05.073
M. Coti Zelati, C. Giorgi, V. Pata, Steady states of the hinged extensible beam with external load, Math. Models Methods Appl. Sci. 20, 43-58, (2010). https://doi.org/10.1142/S0218202510004143
L. Duan, L. Huang, Existence of nontrivial solutions for Kirchhoff-type variational inclusion system in RN , Appl. Math. Comput. 235, 174--186, (2014). https://doi.org/10.1016/j.amc.2014.02.070
R. W. Dickey, Dynamic stability of equilibrium states of the extensible beam, Proc. Amer. Math. Soc. 41, 94-102, (1973). https://doi.org/10.1090/S0002-9939-1973-0328290-8
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl. 29, 443-454, (1970). https://doi.org/10.1016/0022-247X(70)90094-6
M. Ferrara, S. Khademloo, S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234, 316-325, (2014). https://doi.org/10.1016/j.amc.2014.02.041
M. Ferrara, G. Molica Bisci, Existence results for elliptic problems with Hardy potential, Bull. Sci. Math. 138, 846-859, (2014). https://doi.org/10.1016/j.bulsci.2014.02.002
M. Galewski, G. Molica Bisci, Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci. 39, 1480-1492, (2016). https://doi.org/10.1002/mma.3582
J. R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results. Math. 63, 877-889, (2013). https://doi.org/10.1007/s00025-012-0238-x
J. R. Graef, S. Heidarkhani, L. Kong, Multiple solutions for a class of (p1, . . . , pn)-biharmonic systems, Commun. Pure Appl. Anal. (CPAA) 12, 1393-1406, (2013). https://doi.org/10.3934/cpaa.2013.12.1393
X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. TMA 70, 1407-1414, (2009). https://doi.org/10.1016/j.na.2008.02.021
S. Heidarkhani, Existence of non-trivial solutions for systems of n fourth order partial differential equations, Math. Slovaca 64, 1249-1266, (2014). https://doi.org/10.2478/s12175-014-0273-z
S. Heidarkhani, G. A. Afrouzi, M. Ferrara, G. Caristi, S. Moradi, Existence results for impulsive damped vibration systems, Bull. Malays. Math. Sci. Soc. 41, 1409-1428, (2018). https://doi.org/10.1007/s40840-016-0400-9
S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, B. Ge, Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Zeitschrift fuer Angewandte Mathematik und Physik 67, 1-13, (2016). https://doi.org/10.1007/s00033-016-0668-5
S. Heidarkhani, M. Ferrara, G. A. Afrouzi, G. Caristi, S. Moradi, Existence of solutions for Dirichlet quasilinear systems including a nonlinear function of the derivative, Electronic J. Diff. Equ., Vol. 2016, No. 56, pp. 1-12, (2016).
S. Heidarkhani, Y. Tian, C. L. Tang, Existence of three solutions for a class of (p1, . . . , pn)-biharmonic systems with Navier boundary conditions, Ann. Polon. Math. 104, 261-277, (2012). https://doi.org/10.4064/ap104-3-4
G. Kirchhoff, Vorlesungen uber mathematische Physik: Mechanik, Teubner, Leipzig (1883).
L. Li, C. L. Tang, Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal. TMA 73, 796-805, (2010). https://doi.org/10.1016/j.na.2010.04.018
C. Li, C. L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal. TMA 72, 1339-1347, (2010). https://doi.org/10.1016/j.na.2009.08.011
J. Liu, S. X. Chen, X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in RN , J. Math. Anal. Appl. 395, 608-615, (2012).
H. Liu, N. Su, Existence of three solutions for a p-biharmonic problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15, 445-452, (2008).
T.F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlinear Anal. TMA 63, e1967-e1977, (2005). https://doi.org/10.1016/j.na.2005.03.021
A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. TMA 70, 1275-1287, (2009). https://doi.org/10.1016/j.na.2008.02.011
M. Massar, E. M. Hssini, N. Tsouli, M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8, 33-51, (2014). https://doi.org/10.22436/jmcs.08.01.04
G. Molica Bisci, V. Radulescu, Bifurcation analysis of a singular elliptic problem modelling the equilibrium of anisotropic continuous media, Topol. Methods Nonlinear Anal. 45, 493-508, (2015). https://doi.org/10.12775/TMNA.2015.024
G. Molica Bisci, D. Repovs, Multiple solutions of p-biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 59, 271-284, (2014). https://doi.org/10.1080/17476933.2012.734301
K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ. 221, 246-255, (2006). https://doi.org/10.1016/j.jde.2005.03.006
E. L. Reiss, B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column, Quart. Appl. Math. 29, 245-260, (1971). https://doi.org/10.1090/qam/286344
B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410, (2000). https://doi.org/10.1016/S0377-0427(99)00269-1
B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46, 543-549, (2010). https://doi.org/10.1007/s10898-009-9438-7
S. M. Shahruz, S. A. Parasurama, Suppression of vibration in the axially moving Kirchhoff string by boundary control, J. Sound and Vibration 214, 567-575, (1998). https://doi.org/10.1006/jsvi.1998.1506
F. Wang, Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. 2012, 1-9, (2012). https://doi.org/10.1186/1687-2770-2012-6
F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff-type, J. Math. Anal. Appl. 409, 140-146, (2014). https://doi.org/10.1016/j.jmaa.2013.07.003
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech. 17, 35-36, (1950). https://doi.org/10.1115/1.4010053
J. Zhang, The critical Neumann problem of Kirchhoff type, Appl. Math. Comput. 274, 519-530, (2016). https://doi.org/10.1016/j.amc.2015.11.024
J. Zhang, X. Tang, W. Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential, Appl. Math. Comput. 242, 491-499, (2014). https://doi.org/10.1016/j.amc.2014.05.070
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).