Construction of a normalized basis of a univariate quadratic $C^1$ spline space and application to the quasi-interpolation
Resumo
In this paper, we use the finite element method to construct a new normalized basis of a univariate quadratic $C^1$ spline space. We give a new representation of Hermite interpolant of any piecewise polynomial of class at least $C^1$ in terms of its polar form. We use this representation for constructing several superconvergent and super-superconvergent discrete quasi-interpolants which have an optimal approximation order. This approach is simple and provides an interesting approximation. Numerical results are given to illustrate the theoretical ones.
Downloads
Referências
A. Abbadi, M.J. Iba˜nez, D. Sbibih, Computing quasi-interpolants from the B-form of B-splines, Math. Comput. Simul. 81 (2011) 1936-1948. https://doi.org/10.1016/j.matcom.2010.12.005
A. Abbadi, D. Barrera, M.J. Ib'a˜nez, D. Sbibih, A general method for constructing quasi-interpolants from B-splines J. Comput. Appl. Math.234 (2010) 1324-1337. https://doi.org/10.1016/j.cam.2010.01.017
D. Barrera, M. J. Iba˜nez, S.Remogna, On the construction of trivariate near-best quasi-interpolants based on Cr quartic splines on type-6 tetrahedral partitions, J. Comput. Appl. Math. 311 (2017), 252-261. https://doi.org/10.1016/j.cam.2016.07.031
D. Barrera, M. J. Iba˜nez, P. Sablonni'ere, D. Sbibih, On near-best discrete quasi-interpolation on a four-directional mesh, J. Comput. Appl. Math. 233 (2010), 1470-1477. https://doi.org/10.1016/j.cam.2009.02.063
D. Barrera, A. Guessab, M. J. Ib'a˜nez and O. Nouisser, Optimal bivariate C1 cubic quasi-interpolation on a type-2 triangulation, J. Comput. Appl. Math. 234 (2010), 1188-1199. https://doi.org/10.1016/j.cam.2009.07.035
A. Boujraf, M. Tahrichi and A. Tijini, C1 Superconvergent quasi-interpolation based on polar formes, Math. Comput. Simul. 118(2015), 102-115. https://doi.org/10.1016/j.matcom.2014.12.004
P. de Casteljau, Shape Mathematics and CAD, Kogan Ltd. London, 1985.
C. Dagnino, P. Lamberti, S. Remogna, Trivariate quartic splines on type-6 tetrahedral partitions and their applications, Comm. Appl. And Math. 3 (2012), 1-9.
P. Dierckx, On calculating normalized Powell-Sabin B-splines, Comput. Aided Geom. Design 15 (1997), 61-78. https://doi.org/10.1016/S0167-8396(97)81785-2
R. Goldman, R. Krasauskas, Polar forms in geometric modeling and algebraic geometry, in "Topics in Algebraic Geometry and Geometric Modeling", Contemporary Mathematics, 334 (2003),American Mathematical Society, Providence, Rhode Island. https://doi.org/10.1090/conm/334
A. Lamnii, M. Lamnii, F. Oumellal. Computation of Hermite interpolation in terms of B-spline basis using polar forms, Math. Comput. Simul. 134 (2017), 17-27. https://doi.org/10.1016/j.matcom.2016.09.009
A. Lamnii, M. Lamnii, H. Mraoui, Constructing B-spline representation of quadratic Sibson-Thomson splines. Comput. Aided. Geom. Design 33 (2015), 66-81. https://doi.org/10.1016/j.cagd.2015.02.001
M. Lamnii, H. Mraoui, A. Tijini, Construction of quintic Powell-Sabin spline quasi-interpolants based on blossoming, J. Comput. Appl. Math. 250 (2013), 190-209. https://doi.org/10.1016/j.cam.2013.03.023
M. Lamnii, H. Mraoui, A. Tijini, Local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation, Appl. Math. Comp. 219 (2013), 10456-10467. https://doi.org/10.1016/j.amc.2013.04.027
M. Lamnii, H. Mraoui, A. Tijini, A. Zidna, A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation, Math. Comput. Simul. 99 (2014), 108-124. https://doi.org/10.1016/j.matcom.2013.04.020
S. L. Lee, B-splines for cardinal Hermite interpolation, Linear Algebra and its Applications, 12 (1975), 269-280. https://doi.org/10.1016/0024-3795(75)90049-X
C. Manni. On shape preserving C2 Hermite interpolation, BIT Numer. Math. 41 (2001), 127-148. https://doi.org/10.1023/A:1021921902509
C. Manni and P. Sablonniere, Quadratic spline quasi-interpolants on Powell-Sabin partitions, Advances in Comp. Math. 26 (2007), 283-304. https://doi.org/10.1007/s10444-006-9025-0
M. S. Mummy, Hermite interpolation with B-spline, CAGD. 6 (1989). 171-179. https://doi.org/10.1016/0167-8396(89)90021-6
L. Ramshaw, Blossoming are polar forms, Computer Aided Geometric Design, 6.(1989), 323-358. https://doi.org/10.1016/0167-8396(89)90032-0
S. Remogna, Bivariate C2 cubic spline quasi-interpolants on uniform Powell-Sabin triangulations of a rectangular domain, Adv. Comput. Math. 36 (2012), 39-65. https://doi.org/10.1007/s10444-011-9178-3
S. Remogna, Constructing good coefficient functionals for bivariate C1 quadratic spline quasi-interpolants, In: Mathematical Methods for curves and surfaces (Eds. M. Daehlen et al.), LNCS 5862, Springer-verlag berlin Heidelberg, 329-346, 2010. https://doi.org/10.1007/978-3-642-11620-9_22
S. Remogna, Quasi-interpolation operators based on the trivariate seven-direction C2 quartic box spline, BIT 51 (2011), 757-776. https://doi.org/10.1007/s10543-010-0308-y
D. Sbibih, A. Serghini, and A. Tijini, Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants, BIT Numer. Math. 52 (2012), 221-249. https://doi.org/10.1007/s10543-011-0348-y
D. Sbibih, A. Serghini, A. Tijini, Polar forms and quadratic splines quasi-interpolants over Powell-Sabin triangulation, Appl. Num. Math., 59 (2009), 938-958. https://doi.org/10.1016/j.apnum.2008.03.040
D. Sbibih, A. Serghini, A. Tijini, Superconvergent C1 Cubic Spline Quasi-interpolants on Powell-Sabin Partitions, BIT Numer. Math. 55 (3) (2015), 797-821. https://doi.org/10.1007/s10543-014-0523-z
D. Sbibih, A. Serghini, A. Tijini, Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation, Appl. Math. Comput. 250 (2015), 145-156. https://doi.org/10.1016/j.amc.2014.10.090
D. Sbibih, A. Serghini, and A. Tijini, Superconvergent quadratic spline quasi-interpolants over Powell-Sabin triangulation, Appl. Num. Math. 87 (2015), 74-86. https://doi.org/10.1016/j.apnum.2014.08.005
D. Sbibih, A. Serghini, A. Tijini, Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split, J. Comput. Appl. Math. 276 (2015), 117-128. https://doi.org/10.1016/j.cam.2014.08.024
D. Sbibih, A. Serghini, A. Tijini, Trivariate spline quasi-interpolants based on simplex splines and polar forms, Math. Comput. Simul. 118 (2015), 343-359. https://doi.org/10.1016/j.matcom.2014.11.008
I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions v. the B-splines for cardinal Hermite interpolation. Linear Algebra and its Applications, 7 (1973), 1-42. https://doi.org/10.1016/0024-3795(73)90034-7
L. Schumaker, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal. 20(1983), 854-864. https://doi.org/10.1137/0720057
H.-P. Seidel. On hermite interpolation with B-splines. Computer Aided Geom Design, 8(1991), 439-441. https://doi.org/10.1016/0167-8396(91)90029-B
A. Serghini, A. Tijini, New approach to study splines by blossoming method and application to the construction of a bivariate C1 quartic quasi-interpolant, Comput Math. Appl. 71 (2016) 529-543. https://doi.org/10.1016/j.camwa.2015.12.014
H. Speleers, A normalized basis for quintic Powell-Sabin splines, Comput. Aided Geom. Design, 27 (2010), 438-457. https://doi.org/10.1016/j.cagd.2010.05.001
H. Speleers, A normalized basis for reduced Clough-Tocher splines, Comput. Aided Geom. Design, 27 (2010), 700-712. https://doi.org/10.1016/j.cagd.2010.09.003
H. Speleers, Construction of normalized B-splines for a family of smooth spaces over Powell-Sabin triangulations, Constr. Approx. 37 (2012), 41-72. https://doi.org/10.1007/s00365-011-9151-x
H. Speleers, Multivariate normalized Powell-Sabin B-splines and quasi-interpolants, Comput. Aided Geom. Des. 30 (2013) 2-19. https://doi.org/10.1016/j.cagd.2012.07.005
Copyright (c) 2021 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).