An expansion based on Sine-Gordon equation to Solve KdV and modified KdV equations in conformable fractional forms
Abstract
An expansion method based on time fractional Sine-Gordon equation is implemented to construct some real and complex valued exact solutions to the Korteweg-de Vries and modified Korteweg-de Vries equations in time fractional forms. Compatible fractional traveling wave transform plays a key role to be able to apply homogeneous balance technique to set the predicted solution. The relation between trigonometric and hyperbolic functions based on fractional Sine-Gordon equation allows to form the exact solutions with multiplication of powers of hyperbolic functions. Some exact solutions in traveling wave forms are explicitly expressed by the proposed method for both the Korteweg-de Vries and modified Korteweg-de Vries equations.
Downloads
References
Boussinesq, J., Essai sur la theorie des eaux courantes, Memoires presentes par divers savants l'Acad. des Sci. Inst. Nat. France, XXIII, 1-680, 1877.
Korteweg, D. J., de Vries, G. , On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical Magazine, 39 (240): 422-443, 1895. https://doi.org/10.1080/14786449508620739
Miura, Robert M., Gardner, Clifford S., Kruskal, Martin D., Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys., 9 (8): 1204-1209, 1968. https://doi.org/10.1063/1.1664701
Wadati, M., & Toda, M., The exact N-soliton solution of the Korteweg-de Vries equation, Journal of the Physical Society of Japan, 32(5), 1403-1411, 1972. https://doi.org/10.1143/JPSJ.32.1403
Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27(18), 1192, 1971. https://doi.org/10.1103/PhysRevLett.27.1192
Wazzan, L., A modified tanh-coth method for solving the KdV and the KdV-Burgers' equations, Communications in Nonlinear Science and Numerical Simulation, 14(2), 443-450, 2009. https://doi.org/10.1016/j.cnsns.2007.06.011
Wang, M., Li, X., & Zhang, J., The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372(4), 417-423, 2008. https://doi.org/10.1016/j.physleta.2007.07.051
Zheng-De, D., Zhen-Jiang, L., & Dong-Long, L., Exact periodic solitary-wave solution for KdV equation, Chinese Physics Letters, 25(5), 1531, 2008. https://doi.org/10.1088/0256-307X/25/5/003
Ma, W. X., & Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. Journal of Differential Equations, 264(4), 2633-2659, 2018. https://doi.org/10.1016/j.jde.2017.10.033
Korkmaz, A., Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves in Random and Complex Media, 29(1), 124-137, 2019. https://doi.org/10.1080/17455030.2017.1416702
Chen, S. T., & Ma, W. X., Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Frontiers of Mathematics in China, 1-10, 2018. https://doi.org/10.1007/s11464-018-0694-z
Korkmaz, A., Complex wave solutions to mathematical biology models I: Newell-Whitehead-Segel and Zeldovich equations, Journal of Computational and Nonlinear Dynamics, 13(8), 081004, 2018. https://doi.org/10.1115/1.4040411
Chen, S. T., & Ma, W. X., Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Computers & Mathematics with Applications, 76(7), 1680-1685, 2018. https://doi.org/10.1016/j.camwa.2018.07.019
Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., & Asghari, R., Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Optical and Quantum Electronics, 50(3), 150, 2018. https://doi.org/10.1007/s11082-018-1416-1
Yong, X., Ma, W. X., Huang, Y., & Liu, Y., Lump solutions to the Kadomtsev-Petviashvili I equation with a selfconsistent source, Computers & Mathematics with Applications, 75(9), 3414-3419, 2018. https://doi.org/10.1016/j.camwa.2018.02.007
Osman, M. S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., & Zhou, Q., The unified method for conformable time fractional Schr¨odinger equation with perturbation terms, Chinese Journal of Physics, 56(5), 2500-2506, 2018. https://doi.org/10.1016/j.cjph.2018.06.009
Ma, W. X., Yong, X., & Zhang, H. Q., Diversity of interaction solutions to the (2+ 1)-dimensional Ito equation, Computers & Mathematics with Applications, 75(1), 289-295, 2018. https://doi.org/10.1016/j.camwa.2017.09.013
Yang, J. Y., Ma, W. X., & Qin, Z. , Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Analysis and Mathematical Physics, 8(3), 427-436, 2018. https://doi.org/10.1007/s13324-017-0181-9
Yang, J. Y., Ma, W. X., & Qin, Z. Y., Abundant mixed lump-soliton solutions to the BKP equation, East Asian J. Appl. Math, 8(2), 224-232, 2018. https://doi.org/10.4208/eajam.210917.051217a
Ma, W. X., Abundant lumps and their interaction solutions of (3+ 1)-dimensional linear PDEs, Journal of Geometry and Physics, 133, 10-16, 2018. https://doi.org/10.1016/j.geomphys.2018.07.003
L¨u, D., Cui, Y., L¨u, C., & Wei, C., Novel composite function solutions of the modified KdV equation, Applied Mathematics and Computation, 217(1), 283-288, 2010. https://doi.org/10.1016/j.amc.2010.05.059
Wazwaz, A. M., A sine-cosine method for handling nonlinear wave equations, Mathematical and Computer modeling, 40(5-6), 499-508, 2004. https://doi.org/10.1016/j.mcm.2003.12.010
He, J. H., & Wu, X. H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30(3), 700-708, 2006. https://doi.org/10.1016/j.chaos.2006.03.020
Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70, 2014. https://doi.org/10.1016/j.cam.2014.01.002
Korkmaz, A., & Hosseini, K., Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Optical and Quantum Electronics, 49(8), 278, 2017. https://doi.org/10.1007/s11082-017-1116-2
Hosseini, K., & Ansari, R., New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Waves in Random and Complex Media, 1-9, 2017. https://doi.org/10.1080/17455030.2017.1296983
Korkmaz A., On The Wave Solutions of Conformable Fractional Evolution Equations, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1) 68-79, 2018. https://doi.org/10.1501/Commua1_0000000831
Korkmaz A., Exact Solutions to (3 + 1) Conformable Time Fractional Jimbo-Miwa,Zakharov-Kuznetsov and Modified Zakharov-Kuznetsov Equations, Communications in Theoretical Physics, 67(5), 479-482, 2017. https://doi.org/10.1088/0253-6102/67/5/479
Hosseini, K., Mayeli, P., & Ansari, R., Bright and singular soliton solutions of the conformable time-fractional KleinGordon equations with different nonlinearities, Waves in Random and Complex Media, 1-9, 2017. https://doi.org/10.1080/17455030.2017.1362133
Hosseini, K., Mayeli, P., & Ansari, R., Modified Kudryashov method for solving the conformable time-fractional KleinGordon equations with quadratic and cubic nonlinearities, Optik-International Journal for Light and Electron Optics, 130, 737-742, 2017. https://doi.org/10.1016/j.ijleo.2016.10.136
Korkmaz, A., Exact solutions of space-time fractional EW and modified EW equations, Chaos, Solitons & Fractals, 96, 132-138, 2017. https://doi.org/10.1016/j.chaos.2017.01.015
Zafar, A., Rational exponential solutions of conformable space-time fractional equal-width equations, Nonlinear Engineering, 2018. (in press) https://doi.org/10.1515/nleng-2018-0076
Atangana, A., Baleanu, D., & Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1), 1-10, 2015. https://doi.org/10.1515/math-2015-0081
Abdeljawad, T., On conformable fractional calculus, Journal of computational and Applied Mathematics, 279, 57-66, 2015. https://doi.org/10.1016/j.cam.2014.10.016
Yan, C., A simple transformation for nonlinear waves, Physics Letters A, 224, 77-84, 1996. https://doi.org/10.1016/S0375-9601(96)00770-0
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).