Properties of a certain class of multivalent functions

Resumo

The object of this paper is to drive some properties for certain class of multivalent functions. Also we obtain some properties of an integral operator for functions in this class.

Downloads

Não há dados estatísticos.

Biografia do Autor

Teodor Bulboacă, Babeş-Bolyai University

Faculty of Mathematics and Computer Science

Referências

Aouf, M. K., Certain classes of multivalent functions with negative coefficients defined by using differential operator, J. Math. Appl., 30, 5-21, (2008).

Aouf, M. K., Some families of p-valent functions with negative coefficients, Acta Math. Univ. Comenian. (N.S.), 78, no. 1, 121-135, (2009).

Aouf, M. K., Bounded p-valent Robertson functions defined by using a differential operator, J. Franklin Inst., 347, 1927-1941, (2010). https://doi.org/10.1016/j.jfranklin.2010.10.012

Bulboaca, T., Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., ClujNapoca, (2005).

Jack, I. S., Functions starlike and convex of order α, J. Lond. Math. Soc., 3, 469-474, (1971). https://doi.org/10.1112/jlms/s2-3.3.469

Miller, S. S. and Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65, 289-305, (1978). https://doi.org/10.1016/0022-247X(78)90181-6

Miller, S. S. and Mocanu, P. T., Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, (2000).

Nunokawa, M., On the theory of multivalent functions, Tsukuba J. Math., 11, 273-286, (1987). https://doi.org/10.21099/tkbjm/1496160581

Nunokawa, M., Kwon, O. and Cho, N. E., On the multivalent functions, Tsukuba J. Math., 15, 141-143, (1991). https://doi.org/10.21099/tkbjm/1496161574

Owa, S., Some properties of certain multivalent functions, Appl. Math. Lett., 4, no. 5, 79-83, (1991). https://doi.org/10.1016/0893-9659(91)90151-K

Owa, S., Some properties of certain multivalent functions, Math. Nachr., 155, 167-185, (1992). https://doi.org/10.1002/mana.19921550113

Owa, S., Some sufficient conditions for univalency, Chinese J. Math., 20, no. 1, 23-29, (1992).

Owa, S. and Hu, Ke., Properties of certain integral operator, Proc. Japan Acad. Ser. A Math. Sci., 65, no. 8, 292-295, (1989). https://doi.org/10.3792/pjaa.65.292

Owa, S. and Ma, W., On certain subclass of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci., 64, no. 4, 106-108, (1988). https://doi.org/10.3792/pjaa.64.106

Ozaki S. and Nunokawa, M., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33, no. 2, 392-394, (1972). https://doi.org/10.1090/S0002-9939-1972-0299773-3

Patel, J. and Mohanty, A. K., Some properties of a class of analytic functions, Demonstratio Math., 35, no. 2, 273-286, (2002). https://doi.org/10.1515/dema-2002-0208

Saitoh, H., On certain class of multivalent functions, Math. Japon., 37, no. 5, 871-875, (1992).

Saitoh, H., A linear operator and its applications of first order differential subordination, Math. Japon., 44, no. 1, 31-38, (1996).

Sekine, T. and Owa, S., A note on multivalent functions, Proc. Japan Acad. Ser. A Math. Sci., 67, no.6, 215-216, (1991). https://doi.org/10.3792/pjaa.67.215

Publicado
2022-01-23
Seção
Artigos