The (p; q)-Bernstein-Stancu operator of rough statistical convergence on triple sequence
Abstract
In the paper, we investigate rough statistical approximation properties of (p; q)-analogue of Bernstein-Stancu Operators. We study approximation properties based on rough statistical convergence. We also study error bound using modulus of continuity.
Downloads
References
S. Aytar, Rough statistical Convergence, Numer. Funct. Anal. Optim., 29(3), 291-303, (2008).
https://doi.org/10.1080/01630560802001064
A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1(2), 16-25, (2014).
A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2(1), 6-10, (2014). https://doi.org/10.14419/gjma.v2i1.1709
A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., 9(5), 2529-2534, (2015).
A. Esi, S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl. Math. Inf. Sci., 10(6), 2083-2086, (2016). https://doi.org/10.18576/amis/100610
A. J. Datta, A. Esi and B. C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal., 4(2), 16-22, (2013).
S. Debnath, B. Sarma and B. C. Das, Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optim., 6(1), 71-79, (2015).
M. Mursaleen, Khursheed J. Ansari and Asif Khan, Some approximation results by (p,q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264, 392-402, (2015). https://doi.org/10.1016/j.amc.2015.03.135
S. K. Pal, D. Chandra and S. Dutta, Rough ideal Convergence, Hacet. J. Math. Stat., 42(6), 633-640, (2013).
H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim., 22, 201-224, (2001).
A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical convergence, Sel¸cuk J. Appl. Math., 8(2), 49-55, (2007).
A. Sahiner and B. C. Tripathy, Some Irelated properties of triple sequences, Selcuk J. Appl. Math., 9(2), 9-18, (2008).
N. Subramanian and A. Esi, The generalized tripled difference of 3 sequence spaces, Global Journal of Mathematical Analysis, 3(2), 54-60, (2015). https://doi.org/10.14419/gjma.v3i2.4412
A. Esi, M. Kemal Ozdemir and N. Subramanian, The (p, q)-Bernstein-Stancu operator of rough statistical convergence on triple sequence, ICMS (2018), Maltepe, Turkey.
Copyright (c) 2019 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).