On a class of Ikeda-Nakayama rings
Resumo
In this work we introduce the notion of P-Ikeda-Nakayama rings (\P-IN-rings") which is in some way a generalization of the notion of IkedaNakayama rings (\IN-rings"). Then, we study the transfer of this property to trivial ring extension, localization, homomorphic image and to the direct product.
Downloads
Referências
J. Abuihlail, M. Jarrar, and S. Kabbaj, Commutative rings in which every finitely generated ideal is quasi-projective, J. Pure Appl. Algebra 215 (2011), 2504-2511. https://doi.org/10.1016/j.jpaa.2011.02.008
D. D. Anderson, M. Winders, Idealization of a module, Rocky Mountain J. Math, 1(1)(2009), 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prufer conditions, J. Pure Appl. Algebra 214 (2010), 53-60. https://doi.org/10.1016/j.jpaa.2009.04.011
G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal ? Comm. Algebra 43 (2015), 2690-2702. https://doi.org/10.1080/00927872.2014.882931
Birkenmeir, G. F, Park, J. K, Rizvi, S.T,: Extension of ring and Modules. Springer, New York (2013).
Camillo, V., Nicholson, W. K., Yousif, M. F. (2000). Ikeda- Nakayama rings. J. Algebra 226:1001-1010. https://doi.org/10.1006/jabr.1999.8217
R. Damiano and J. Shapiro, Commutative torsion stable rings, J. Pure Appl. Algebra 32 (1984), 21-32. https://doi.org/10.1016/0022-4049(84)90011-2
S. Glaz, Commutative coherent rings, Lect. Notes Math. 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers, New York-London, 1962.
N. Mahdou, On weakly finite conductor rings, Comm. Algebra, 10 (2004), 4027-4036. https://doi.org/10.1081/AGB-200028231
I. Palmer, J. E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27 (1973), 380-413. https://doi.org/10.1016/0021-8693(73)90113-0
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).