Exponential growth of positive initial energy solutions for coupled nonlinear Klein-Gordon equations with degenerate damping and source terms
Abstract
In this paper we will prove that the positive initial-energy solution for coupled nonlinear Klein-Gordon equations with degenerate damping and source terms grows exponentially.
Downloads
References
M. Abdelli and B. Abbes, Energy decay of solutions of a degenerate Kirchhoff equation with a weak nonlinear dissipation, Nonlinear Analysis 69, 1999-2008 (2008). https://doi.org/10.1016/j.na.2007.07.042
R. A. Adams and J. J. F.Fournier, : Sobolev Spaces, Academic Press, New York (2003).
K. Agre and M.A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Diff. Integral Eqns., 19 (11), 1235-1270 (2006).
C. O. Alves, M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. A. Rammaha, and D. Toundykov, On the existence, uniform decay rates and blow up of solutions to systems of nonlinear wave equations with damping and source terms, Discrete and Continuous Dynamical Systems-Series S, 2(3), 583-608 (2009). https://doi.org/10.3934/dcdss.2009.2.583
D. D. Ang and A. P. N. Dinh,Strong solutions of a quasilinear wave equation with non linear damping, SIAM Journal on Mathematical Analysis, vol. 19, no. 2, pp. 337-347 (1988). https://doi.org/10.1137/0519024
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Diff .Eq., 109, 295-308 (1994). https://doi.org/10.1006/jdeq.1994.1051
K. Kafini and S. A. Messaoudi, A blow-up result in a Cauchy viscoelastic problem, Applied Mathematics Letters 21, 549-553 (2008). https://doi.org/10.1016/j.aml.2007.07.004
H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Archive for Rational Mechanics and Analysis, vo l37, no. 4, pp. 341-361 (1997). https://doi.org/10.1007/s002050050032
S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl. 365, 277-287 (2010). https://doi.org/10.1016/j.jmaa.2009.10.050
S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320, 902-915 (2006). https://doi.org/10.1016/j.jmaa.2005.07.022
E. Piskin, Blow up of positive initial-energy solutions for coupled nonlinear wave equations with degenerate damping and source terms, Boundary Value Problems, 1-11 (2015). https://doi.org/10.1186/s13661-015-0306-8
E. Piskin, N. Polat, Global existence, decay and blow up solutions for coupled nonlinear wave equations with damping and source terms, Turk J Math, 37: 633 - 651 (2013). https://doi.org/10.1002/mma.3042
M. A. Rammaha, S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal., 72, 2658-2683 (2010). https://doi.org/10.1016/j.na.2009.11.013
B. Said-Houari, Exponential growth of positive initial-energy solution of a system of nonlinear viscoelastic wave equation with damping and source terms, Z. Angew. Math. Phys, 62, 115-133 (2011). https://doi.org/10.1007/s00033-010-0082-3
B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Diff. Integral Eqns., 23 (1-2), 79-92 (2010). https://doi.org/10.1007/s00033-010-0082-3
E. Vitillaro, Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal., 149, 155-182 (1999). https://doi.org/10.1007/s002050050171
S. T. Wu, Blow-up of solutions for a system of nonlinear wave equations with nonlinear damping, Electron. J. Differential Equations, 2009 (105), 1-11 (2009).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).