Some metrical $\varphi$-fixed point results of Wardowski type with applications to integral equations

  • Hayel Nasr Saleh Taiz University
  • Mohammad Imdad Aligarh Muslim University
  • Waleed M. Alfaqih Hajjah University

Resumo

In this article, we define the concepts of $(\mathcal{F}^*,\varphi)$-contraction and $(\mathcal{F}^*,\varphi)$-expansion mappings in metric spaces and utilize the same to prove some $\varphi$-fixed point theorems for this kind of mappings. The obtained results used to present some results in partial metric spaces. Also, employing our newly results, we examine the existence and uniqueness of solution for integral equations. Furthermore supported example is provided.

Downloads

Não há dados estatísticos.

Referências

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. math, 3(1), 133-181, (1922). https://doi.org/10.4064/fm-3-1-133-181

M. Jleli and B. Samet, A new generalization of the banach contraction principle. Journal of Inequalities and Applications, 2014(1), 38 , (2014). https://doi.org/10.1186/1029-242X-2014-38

S. I. Ri, A new fixed point theorem in the fractal space, Indagationes Mathematicae. 27(1), 85-93, (2016). https://doi.org/10.1016/j.indag.2015.07.006

P. Dutta and B. S. Choudhury, A generalisation of contraction principle in metric spaces. Fixed Point Theory and Applications, 2008(1), 406368, (2008). https://doi.org/10.1155/2008/406368

T. Suzuki, A generalized banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society. 136(5), 1861-1869, (2008). https://doi.org/10.1090/S0002-9939-07-09055-7

D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces. fixed point theory Applications, 2012(1), 94, (2012). https://doi.org/10.1186/1687-1812-2012-94

H. Piri and P. Kumam, Some fixed point theorems concerning f-contraction in complete metric spaces. Fixed Point Theory and Applications, 2014(1), 210, (2014). https://doi.org/10.1186/1687-1812-2014-210

N. A. Secelean, Generalized F-iterated function systems on product of metric spaces. Journal of Fixed Point Theory and Applications, 17(3), 575-595, (2015). https://doi.org/10.1007/s11784-015-0235-2

N. A. Secelean and D. Wardowski, ψF-contractions: Not necessarily nonexpansive picard operators. Results in Mathematics, 70, 415-431, (2016). https://doi.org/10.1007/s00025-016-0570-7

F. Vetro, F-contractions of hardy-rogers type and application to multistage decision processes. Nonlinear Anal. Model. Control, 21(4), 531-546, (2016). https://doi.org/10.15388/NA.2016.4.7

D. Klim and D. Wardowski, Fixed points of dynamic processes of set-valued F-contractions and application to functional equations. Fixed Point Theory and Applications, 2015(1), 22, (2015). https://doi.org/10.1186/s13663-015-0272-y

N. Secelean, Weak F-contractions and some fixed point results. Bulletin of the Iranian Mathematical Society, 42(3), 779-798, (2016).

D. Wardowski and N. Van Dung, Fixed points of F-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), 146-155, (2014). https://doi.org/10.2478/dema-2014-0012

R. Gubran, M. Imdad, I. A. Khan, and W. M. Alfaqih, Order-theoretic common fixed point results for F-contractions. Bulletin of Mathematical Analysis and Applications, 10(1), 80-88, ( 2018).

M. Imdad, Q. Khan, W. Alfaqih, and R. Gubran, A relation-theoretic (F, R)-contraction principle with applications to matrix equations. Bulletin of Mathematical Analysis and Applications, 10( 1), 1-12, (2018).

S. Z. Wang, Some fixed point theorems on expansion mappings. Math. Japon., 29, 631-636, (1984).

M. A. Khan, M. S. Khan, and S. Sessa, Some theorems on expansion mappings and their fixed points. Demonstratio Math, 19(3), (1986). https://doi.org/10.1515/dema-1986-0311

S. Radenovic, T. Dosenovic, T. A. Lampert, and Z. Golubovıc, A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations. Applied Mathematics and Computation, 273, 155-164, (2016). https://doi.org/10.1016/j.amc.2015.09.089

S. Kang, Fixed points for expansion mappings. Math. Japon, 38(4), 713-717, (1993).

M. Imdad and T. I. Khan, Fixed point theorems for some expansive mapping via implicit relations. Nonlinear Analysis Forum, 9, 209-218, (2004).

M. Imdad and W. M. Alfaqih, A relation-theoretic expansion principle. Acta Univ. Apulensis, 54, 55-69, (2018). https://doi.org/10.17114/j.aua.2018.54.05

J. G'ornicki, Fixed point theorems for F-expanding mappings, Fixed Point Theory and Applications, 2017, 9, (2017). https://doi.org/10.1186/s13663-017-0602-3

S. G. Matthews, Partial metric topology. Annals of the New York Academy of Sciences, 728(1), 183-197, (1994). https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

I. A. Rus, Fixed point theory in partial metric spaces. An. Univ. Vest. Timi¸s., Ser. Mat. Inform, 46(2), 141-160, (2008).

S. Oltra and O. Valero, Banach's fixed point theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste, 36, 17-26, (2004).

M. Jleli, B. Samet, and C. Vetro, Fixed point theory in partial metric spaces via ϕ-fixed point's concept in metric spaces. Journal of Inequalities and Applications, 2014(1), 426, (2014). https://doi.org/10.1186/1029-242X-2014-426

M. Berzig, E. Karapınar, and A. F. Rold'an-L'opez-de Hierro, Discussion on generalized-(αψ, β)-contractive mappings via generalized altering distance function and related fixed point theorems. Abstract and Applied Analysis, 2014, 287492, (2014). https://doi.org/10.1155/2014/259768

A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions. J. Nonlinear Sci. Appl, 8(6), 1059-1069, (2015). https://doi.org/10.22436/jnsa.008.06.16

Publicado
2022-01-24
Seção
Artigos