A new method for the sum-edge characteristic polynomials of graphs

Abstract

In this paper, the determinant of the sum-edge adjacency matrix of any given graph without loops is calculated by means of an algebraic method using spanning elementary subgraphs and also the coefficients of the corresponding sum-edge characteristic polynomial are determined by means of the elementary subgraphs. Also we gave a formula for the number of smallest odd-sized cycles in a given regular graph.

Downloads

Download data is not yet available.

Author Biographies

Mert Sinan OZ, Bursa Technical University

Mathematics

Researcher

Ismail Naci Cangul, Bursa Uludag University

Mathematics

 

Researcher

References

Ashraf, F., Energy, matching number and odd cycles of graphs, Linear Algebra and its Applications 577, 159-167, (2019). https://doi.org/10.1016/j.laa.2019.04.029

Bapat, R. B., Graphs and Matrices, Springer, New York (2014). https://doi.org/10.1007/978-1-4471-6569-9

Biggs, N., Algebraic Graph Theory, Cambridge University Press, Cambridge (1974). https://doi.org/10.1017/CBO9780511608704

Brouwer, A. E., Haemers, W. H., Spectra of Graphs, Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1939-6

Chung, F. R. K., Spectral Graph Theory, CBMS 92, American Mathematical Society, Rhode Island (2009).

Colman, B., Hill, D., Elementary Linear Algebra with Applications, Prentice Hall, New Jersey (2007).

Cvetkovic, D. M., Doob, M., Sachs, H., Spectra of Graphs-Theory and Applications, Academic Press, Cambridge (1980).

Das, K. C., Gutman, I., On Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs, Linear Algebra and its Applications 554, 170-184, (2018). https://doi.org/10.1016/j.laa.2018.05.030

Das, K. C., Gutman, I., Milovanovic, I., Milovanovic, E., Furtula, B., Degree-based energies of graphs, Linear Algebra and its Applications 554, 185-204, (2018). https://doi.org/10.1016/j.laa.2018.05.027

Das, K. C., Mojallal, S. A., Sun, S., On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs, Linear Algebra and its Applications 569, 175-194, (2019). https://doi.org/10.1016/j.laa.2019.01.016

Janezic, D., Milicevic, A., Nikolic, S., Trinajstic, N., Graph Theoretical Matrices in Chemistry, CRC Press, Taylor and Francis Group, Florida (2015). https://doi.org/10.1201/b18389

Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4220-2

Nikiforov, V., Remarks on the energy of regular graphs, Linear Algebra and its Applications 508, 133-145, (2016). https://doi.org/10.1016/j.laa.2016.07.007

Oz, M. S., Yamac, C., Cangul, I. N., Sum-edge characteristic polynomials of graphs, Journal of Taibah University for Science 13 (1), 193-200, (2019). https://doi.org/10.1080/16583655.2018.1555989

Wong, D., Wang, X., Chu, R., Lower bounds of graph energy in terms of matching number, Linear Algebra and its Applications 549, 276-286, (2018). https://doi.org/10.1016/j.laa.2018.03.040

Yamac, C., Oz, M. S., Cangul, I. N., Edge Adjacency in Graphs, Proceedings of the Jangjeon Mathematical Society 21 (3), 357-373, (2018).

Yamac, C., Oz, M. S., Cangul, I. N., Edge-Zagreb Indices of Graphs, Turkic World of Mathematical Society Journal of Applied and Engineering Mathematics 9 (1), (2019) (preprint).

Published
2022-02-02
Section
Research Articles