A new method for the sum-edge characteristic polynomials of graphs
Abstract
In this paper, the determinant of the sum-edge adjacency matrix of any given graph without loops is calculated by means of an algebraic method using spanning elementary subgraphs and also the coefficients of the corresponding sum-edge characteristic polynomial are determined by means of the elementary subgraphs. Also we gave a formula for the number of smallest odd-sized cycles in a given regular graph.
Downloads
References
Ashraf, F., Energy, matching number and odd cycles of graphs, Linear Algebra and its Applications 577, 159-167, (2019). https://doi.org/10.1016/j.laa.2019.04.029
Bapat, R. B., Graphs and Matrices, Springer, New York (2014). https://doi.org/10.1007/978-1-4471-6569-9
Biggs, N., Algebraic Graph Theory, Cambridge University Press, Cambridge (1974). https://doi.org/10.1017/CBO9780511608704
Brouwer, A. E., Haemers, W. H., Spectra of Graphs, Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1939-6
Chung, F. R. K., Spectral Graph Theory, CBMS 92, American Mathematical Society, Rhode Island (2009).
Colman, B., Hill, D., Elementary Linear Algebra with Applications, Prentice Hall, New Jersey (2007).
Cvetkovic, D. M., Doob, M., Sachs, H., Spectra of Graphs-Theory and Applications, Academic Press, Cambridge (1980).
Das, K. C., Gutman, I., On Laplacian energy, Laplacian-energy-like invariant and Kirchhoff index of graphs, Linear Algebra and its Applications 554, 170-184, (2018). https://doi.org/10.1016/j.laa.2018.05.030
Das, K. C., Gutman, I., Milovanovic, I., Milovanovic, E., Furtula, B., Degree-based energies of graphs, Linear Algebra and its Applications 554, 185-204, (2018). https://doi.org/10.1016/j.laa.2018.05.027
Das, K. C., Mojallal, S. A., Sun, S., On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs, Linear Algebra and its Applications 569, 175-194, (2019). https://doi.org/10.1016/j.laa.2019.01.016
Janezic, D., Milicevic, A., Nikolic, S., Trinajstic, N., Graph Theoretical Matrices in Chemistry, CRC Press, Taylor and Francis Group, Florida (2015). https://doi.org/10.1201/b18389
Li, X., Shi, Y., Gutman, I., Graph Energy, Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4220-2
Nikiforov, V., Remarks on the energy of regular graphs, Linear Algebra and its Applications 508, 133-145, (2016). https://doi.org/10.1016/j.laa.2016.07.007
Oz, M. S., Yamac, C., Cangul, I. N., Sum-edge characteristic polynomials of graphs, Journal of Taibah University for Science 13 (1), 193-200, (2019). https://doi.org/10.1080/16583655.2018.1555989
Wong, D., Wang, X., Chu, R., Lower bounds of graph energy in terms of matching number, Linear Algebra and its Applications 549, 276-286, (2018). https://doi.org/10.1016/j.laa.2018.03.040
Yamac, C., Oz, M. S., Cangul, I. N., Edge Adjacency in Graphs, Proceedings of the Jangjeon Mathematical Society 21 (3), 357-373, (2018).
Yamac, C., Oz, M. S., Cangul, I. N., Edge-Zagreb Indices of Graphs, Turkic World of Mathematical Society Journal of Applied and Engineering Mathematics 9 (1), (2019) (preprint).
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).