Application of the dual space of Gelfand-Shilov spaces of Beurling type

  • Ala Qadomi The Hashemite University
  • Maysam Abu-Dalu The Hashemite University
  • Saud Al-Sadi The Hashemite University
  • Hamed M. Obiedat The Hashemite University

Résumé

Using a previously obtained structure theorem of Gelfand-Shilov spaces $\Sigma _{\alpha }^{\beta }$ of Beurling type of ultradistributions, we prove that these ultradistributions can be represented as an initial values of solutions of the heat equation by describing the action of the Gauss-Weierstrass semigroup on the dual space $(\Sigma _{\alpha }^{\beta})^{\prime }.$

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

G. Bjorck, Linear partial differential operators and generalized distributions, Ark. Mat. 6, 351-407 (1965-1967). https://doi.org/10.1007/BF02590963

J. Chung, S. Y. Chung, D. Kim, Characterizations of the Gelfand-Shilov spaces via Fourier Transform, Proc. Amer. Math. Soc. 124, 2101-2108, (1996). https://doi.org/10.1090/S0002-9939-96-03291-1

I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. II, Academic Press. New York, (1964).

A. Kaminski, D. Perisic, S. Pilipovic, On the convolution in the Gelfand-Shilov spaces, Integral Transforms and Special Functions, 4:1-2, 83-96,(2007). https://doi.org/10.1080/10652469608819096

A. N. Kolmogorov, S. V. Fomin, and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Vol. 1. Courier Dover Publications, (1999).

T. Martınez, Extremal spaces related to Schr¨odinger operators with potentials satisfying a reverse H¨older inequality, Rev. Un. Mat. Argentina 45, 43-61, (2004).

H. Obiedat, W. Shatanawi, M. Yasein, Structure theorem for functionals in the space S′ w1,w2, int. j. of Pure and Applied Math, vol.online. https://doi.org/10.1155/2008/756834

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, (1983). https://doi.org/10.1007/978-1-4612-5561-1

Publiée
2022-02-06
Rubrique
Research Articles