Semi-fredholm and semi-browder spectra for Co-quasi-semigroups
Résumé
In [5] D. Barcenas and H. Leiva are introduced the notion of C0-quasi-semigroups of bounded linear operators, as a generalization of C0-semigroups of operators. In this paper, we shall show the connections between a different spectra of the C0-quasi-semigroups by the spectra of their generators, specially, ascent, descent essential ascent and essential descent, upper and lower semi-Fredholm and semi-Browder spectra.
Téléchargements
Références
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
W. Arendt, Vector-valued Laplace Transforms and Cauchy Problems, Israel J. Math, 59 (3) (1987), 327-352. https://doi.org/10.1007/BF02774144
D. Barcenas and H. Leiva,Quasisemigroups, Evolutions E quation and Controllability, Notas de Matematicas no. 109, Universidad de Los Andes, Merida, Venezuela, 1991.
D. Barcenas and H. Leiva, Quasisemigroups and evolution equations, International Journal of Evolution Equations, vol. 1, no. 2, pp. 161-177, 2005.
D. Barcenas, H. Leiva and A.T. Moya, The Dual Quasi -Semigroup and Controllability of Evolution Equations, Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 691-702, 2006. https://doi.org/10.1016/j.jmaa.2005.07.031
O. Bel Hadj Fredj, M. Burgos and M. Oudghiri, Ascent spectrum and essential ascent spectrum, Studia Math., 187 (1) (2008). https://doi.org/10.4064/sm187-1-3
M. Burgos, A. Kaidi, M. Mbekhta and M. Oudghiri, The descent spectrum and perturbations, J. Operator Theory, 56 (2006), 259-271.
A. Elkoutri and M. A. Taoudi, Spectral Inclusions and stability results for strongly continuous semigroups, Int. J. of Math. and Mathematical Sciences, 37 (2003), 2379-2387. https://doi.org/10.1155/S0161171203202088
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evo-lution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York 1983. https://doi.org/10.1007/978-1-4612-5561-1
Sutrima, Ch. Rini Indrati, Lina Aryati, and Mardiyana,The fundamental properties of quasi-semigroups, , Journal of Physics: Conf. Series 855 (2017) 012052. https://doi.org/10.1088/1742-6596/855/1/012052
A. Tajmouati and H. Boua, Spectral Inclusions for C0-Semigroups, International Journal of Mathematical Analysis, Vol. 9, 2015, no. 40, 1971 - 1980. https://doi.org/10.12988/ijma.2015.56160
A. Tajmouati, M.Amouch and Zakariya M. R. F. Alhomidi, Spectral equality for for C0-Semigroups, Rend. Circ. Mat. Palermo II, Ser (2016) 65:425434. https://doi.org/10.1007/s12215-016-0243-0
A. Tajmouati, Y. Zahouan and M. A. Ould Mohamed Baba, Spectral inclusions between C0-quasi-semigroups and their generators, Boletim da Sociedade Paranaense de Matematica, ISSN-0037-8712 in press.
A. Tajmouati, M. Karmouni and Y. Zahouan, Quasi-Fredholm and Saphar spectra for C0-quasi-semigroups, Advances in Operator Theory, https://doi.org/10.1007/s43036-020-00040-2.
A. E. Taylar and D. C. Lay, Introduction to Functional Analysis, 2nd ed. New York: John Wiley and Sons, 1980.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).