Periodic solutions for a higher-order p-Laplacian neutral differential equation with multiple deviating arguments

Résumé

In this article, we consider the following high-order p-Laplacian neutral differential equation with multiple deviating arguments:
$$(\varphi_{p}(x(t)-cx(t-r))^{(m)}(t)))^{(m)}= f(x(t))x'(t)+g(t,x(t),x(t-\tau_{1}(t)),...,x(t-\tau_{k}(t)))+e(t).$$
By appling the continuation theorem, theory of Fourier series, Bernoulli numbers theory and some analytic techniques, sufficient conditions for the existence of periodic solutions are established.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Loubna Moutaouekkil, University Mohamed First

Département de Mathématiques et Informatique

Omar Chakrone, University Mohamed First

Department of Mathematics

Zakaria El Allali, University Mohamed First

Department of Mathematics

Said Taarabti, University Ibn Zohr

Department of Mathematics

Références

S. Lu, W. Ge, Sufficient conditions for the existence of Periodic solutions to some second order differential equation with a deviating argument, J. Math. Anal. Appl 308(2005)393-419.

B. Liu, L. Huang,Existence and uniqueness of periodic solutions for a kind of Lienard equation with a deviating argument, Appl. Math. Lett. 21 (2008) 56-62.

Aomar Anane, Omar Chakrone, Loubna Moutaouekkil,Periodic solutions for p-laplacian neutral functional differential equations with multipledeviating arguments, Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 148, pp. 1-12.

Aomar Anane, Omar Chakrone, Loubna Moutaouekkil,Li'enard type p-laplacian neutral rayleigh equation with a deviating argument, Electronic Journal of Differential Equations, Vol. 2010(2010), No. 177, pp. 1-8.

Shiping Lu,Periodic solutions to a second order p-Laplacian neutral functional differential system, Nonlinear Analysis 69 (2008) 4215-4229

Aomar Anane, Omar Chakrone, Loubna Moutaouekkil,Existence of periodic solution for p-Laplacian neutral Rayleigh equation with sign-variable coefficient of non linear term, International Journal of Mathematical Sciences 2013 7(2)

Liang Feng, Guo Lixiang, Lu Shiping,Existence of periodic solutions for a p-Laplacian neutral functional differential equation, Nonlinear Analysis 71(2009)427-436.

Lijun. Pan,periodic solutions for higher order differential equation with a deviating argument, J. Math. Anal. Appl 343 (2008) 904-918.

Xiaojing Li,Existence and uniqueness of periodic solutions for a kind of high-order p-Laplacian Duffing differential equation with sign-changing coefficient ahead of linear term. Nonlinear Analysis 71 (2009) 2764-2770

Liang Feng, Guo Lixiang, Lu Shiping,Existence of periodic solutions for a p-Laplacian neutral functional differential equation, Nonlinear Analysis 71(2009)427-436.

Lu, S, Ge, W,Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear Anal., Theory Methods Appl. 56, 501-514 (2004)

R.E. Gaines, J.L. Mawhin ,Coincidence Degree and Nonlinear Differential Equations, Springer Verlag, Berlin, 1977.

M. Zhang,Nonuniform non-resonance at the first eigenvalue of the p-Laplacian, Nonlinear Anal 29(1997)41-51.

C. Zhong, X. Fan, W. Chen,Introduction to Nonlinear Functional Analysis [M], Lanzhou University Press, Lan Zhou, 2004 (in Chinese).

W. Cheug, J.L. Ren,Periodic solutions for p-Laplacian type Rayleigh equations, Nonlinear Anal.65(2006)2003-2012.

Xiaojing Li, Shiping Lu,Periodic solutions for a kind of high-order p-Laplacian differential equation with sign-changing coefficient ahead of the non-linear term. Nonlinear Analysis 70 (2009) 1011-1022.

Kai Wang, Yanling Zhu,Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation Journal of the Franklin Institute 347(2010)1158-1170

Publiée
2022-12-23
Rubrique
Articles