Pendant and isolated vertices of comaximal graphs of modules
Résumé
A comaximal graph Γ(M) is an undirected graph with vertex set as the collection of all submodules of a module M and any two vertices A and B are adjacent if and only if A + B = M. We discuss characteristics of pendant vertices in Γ(M). We also observe features of isolated vertices in a special spanning subgraph in Γ(M).
Téléchargements
Références
Akbari, S., Habibi, M., Majidinya, A., Manaviyat, R.: A note on comaximal graph of non-commutative rings, Algebras and Representation Theory, 16 (2) (2013) 303-307. DOI: https://doi.org/10.1007/s10468-011-9309-z
Anderson, D. F., Badawi, A.: The total graph of a commutative ring, J. of Algebra, 320 (2008) 2706–2719. DOI: https://doi.org/10.1016/j.jalgebra.2008.06.028
Ashrafi, N.; Maimani, H.R.; Pournaki, M.R.; Yassemi, S.: Unit graphs associated with rings, Comm. Algebra, 38 (8) (2010) 2851–2871. DOI: https://doi.org/10.1080/00927870903095574
Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra, Addison-Wesley, London, 1969.
Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules, Managing Editors P. R. Halmos, 1978.
Barnard, A.: Multiplication Modules, J. Algebra, 71 (1981) 174-178. DOI: https://doi.org/10.1016/0021-8693(81)90112-5
Balkrishnan, R., Ranganathan, K.: A text book of graph theory, Springer-verlag New York, Inc. Reprint, 2008.
Beck, I.: Coloring of commutative rings, J. Algebra, 116 (1988) 208-226. DOI: https://doi.org/10.1016/0021-8693(88)90202-5
Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings, Discrete Math., 309 (17) (2009) 5381–5392. DOI: https://doi.org/10.1016/j.disc.2008.11.034
Harary, F.: Graph theory, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1969.
Huckaba, J. A.: Commutative rings with zero-divisors, Marcel-Dekker, New York, Basel, 1988.
Lambeck, J.: Lectures on rings and modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
Kasch, F.: Modules and rings, Academic Press Inc. (London) Ltd., 1982.
Kaplansky, I.: Commutative rings, revised Edition, University of Chicago Press, Chicago, 1974.
Kirby , D.: Closure operations on ideal and submodules, J. London Math. Soc., 44 (1969) 283-291. DOI: https://doi.org/10.1112/jlms/s1-44.1.283
Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings, J. Algebra, 319 (2008) 1801-1808. DOI: https://doi.org/10.1016/j.jalgebra.2007.02.003
Mijbass, A. S., Abdullah, N. K.: Semi-small submodules, Tikrit Journal of Pure Science, 16 (1) (2011) 104-107.
Naoum , A. G.: On the ring of endomorphisms of finitely generated multiplication modules , Periodica Mathematica Hungarica, 29 (1994) 277-284. DOI: https://doi.org/10.1007/BF01875854
Sharma, P. K.; Bhatwadekar, S.M.: A note on graphical representation of rings, J. Algebra, 176 (1) (1995) 124–127. DOI: https://doi.org/10.1006/jabr.1995.1236
Wang, H.: Graphs associated to co-maximal ideals of commutative rings, J. Algebra, 320 (2008) 2917-2933. DOI: https://doi.org/10.1016/j.jalgebra.2008.06.020
Wisbauer, R., Foundations of module and ring theory, Gordon and Breach Science Publishers, Reading, 1991.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).