Implementation and numerical aspects of the matlab solver designed for the solution of low protein model

  • Meraihi Mouna Freres Mentouri Constantine University

Résumé

In this paper, we discuss the implementation and numerical aspects of the Matlab solver designed for the solution of Low Protein Model (LPD). In this paper, we study the existence and uniqueness of the weak solution and we try to write some codes in Matlab which are based on Euler’s Method and several technics of programmation.  subject to an initial condition 

dM

dt   = µL δM,                                                            (2)

L(0) = 0 and  M (0) = 0.                                                     (3)

The code is based on Euler’s Method and several technics of programmation.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

Lions, J. L., Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev. 30 (1988), 1-68. DOI: https://doi.org/10.1137/1030001

Aikman, D. and Hewitt. G., An experimental investigation of the rate and form of dispersal in grasshoppers, J. Appl. Ecol. (1972), p.p. 807–817. DOI: https://doi.org/10.2307/2401906

Beck, M. T. and Varadi, Z.B., One, two and three-dimensional spatially periodic chemical reactions, Nature. (1972), p.p. 15–16. DOI: https://doi.org/10.1038/physci235015a0

Britton, N. F., Reaction-Diffusion Equations and their Applications to Biology, Academic Press, New York. (1986).

Getz, W., Biomass transformation webs provide a unified approach to consumer resource modelling, Ecology Letters. (2011). DOI: https://doi.org/10.1111/j.1461-0248.2010.01566.x

Hliddell, H. G. and Scott. R., A Greek-English Lexicon, on Perseus Digital Library, (2002).

Sibony, M. and Mardon, J. CL., Approximation et quations differentielles, (1982).

Diekmann, O. and Heesterbeek, J. A. P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley, New York. (2000).

Capasso, V. and Paveri-Fontana, S. L., A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemic. et Sant´e Publ. (1979), p.p. 121–132.

Rook, G. A. W., The hygiene hypothesis and the increasing prevalence of chronic inflam-matory disorders, Transactions of the Royal Society of Tropical Medicine and Hygiene. Vol. 101 (11): 1072–4, (2007). DOI: https://doi.org/10.1016/j.trstmh.2007.05.014

Falconer, K. J., Fractal Geometry, Mathematical foundations and Applications. John Wiley and sons, Ithaca, New York. (1990). DOI: https://doi.org/10.2307/2532125

Fife, P. C. and McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling wave solutions, Archiv. Rat. Mech. Anal. (1977), Vol. 65, p.p. 335–361. DOI: https://doi.org/10.1007/BF00250432

Lively, C. M. and Mark F. Dybdahl., Parasite adaptation to locally common host genotypes, Nature. Vol. 405. 8 June (2000). DOI: https://doi.org/10.1038/35015069

Jean L. M., Analyse numerique avec MATLAB, (2007).

Frerichs, R. R. and Prawda, J., A computer simulation model for the control of rabies in an urban area of Colombia, Management Science. (1975), Vol. 22, p.p. 411–421. DOI: https://doi.org/10.1287/mnsc.22.4.411

Publiée
2022-12-23
Rubrique
Articles