A new class of higher order hypergeometric Bernoulli polynomials associated with Hermite polynomials
Abstract
In this paper, we introduce new class of higher order hypergeometric Hermite-Bernoulli numbers and polynomials. We shall provide several properties of higher order hypergeometric Hermite-Bernoulli
polynomials including summation formulae, sums of products identity, recurrence relations.
Downloads
References
Arakawa, T., Ibukiyama, T., Kaneko, M., Bernoulli numbers and zeta functions. With an appendix by Don Zagier, Springer Monographs in Mathematics. Springer, Tokyo, 2014. https://doi.org/10.1007/978-4-431-54919-2
Aoki, M., Komatsu, T., Panda, G. K., Several properties of hypergeometric Bernoulli numbers, Journal of Inequalities and Applications, (2019) 2019:113. https://doi.org/10.1186/s13660-019-2066-y
Bell, E. T., Exponential polynomials, Ann. of Math., 35, 258-277, (1934). https://doi.org/10.2307/1968431
Dattoli, G., Lorenzutta, S., and Cesarano, C., Finite sums and generalized forms of Bernoulli polynomials, Rendiconti di Mathematica, 19, 385-391, (1999).
Howard, F. T., A sequence of numbers related to the exponential function, Duke Math. J., 34, 599-615, (1967). https://doi.org/10.1215/S0012-7094-67-03465-5
Howard, F. T., Some sequences of rational numbers related to the exponential function, Duke Math. J., 34, 701-716, (1967). https://doi.org/10.1215/S0012-7094-67-03473-4
Hu, S., and Kim, M. S., On hypergeometric Bernoulli numbers and polynomials, Acta Math. Hungar., 154, 134-146. (2018). https://doi.org/10.1007/s10474-017-0767-6
Hu, S., and Komatsu, T., Explicit expressions for the related numbers of higher order Appell polynomials, Quaestiones Mathematicae, (2019), 1-11, https://doi.org/10.2989/16073606.2019.1596174
Iwasawa, K., Lectures on p-Adic L-Functions, Ann. of Math. Stud., vol. 74, Princeton Univ. Press, Princeton, 1972. https://doi.org/10.1515/9781400881703
Kamano, K., Sums of products of hypergeometric Bernoulli numbers, J. Number Theory, 130, 2259-2271, (2010). https://doi.org/10.1016/j.jnt.2010.04.005
Kurokawa, N., Kurihara, M., Saito, N., Number theory. 3. Iwasawa theory and modular forms. Translated from the Japanese by Masato Kuwata. Translations of Mathematical Monographs, 242. Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2012. https://doi.org/10.1090/mmono/242
Kim, M. S., and Hu, S. A., p-adic view of multiple sums of powers, Int. J. Number Theory, 7, 2273-2288, (2011). https://doi.org/10.1142/S1793042111005027
Nguyen, H. D., and Cheong, L. G., New convolution identities for hypergeometric Bernoulli polynomials, J. Number Theory, 137, 201-221, (2014). https://doi.org/10.1016/j.jnt.2013.11.008
N¨orlund, M. E., Differenzenrechnung, Springer-Verlag, Berlin, 1924. https://doi.org/10.1007/978-3-642-50824-0
Hassen, A., and Nguyen, H. D., Hypergeometric Bernoulli polynomials and Appell sequences, International Journal of Number Theory, 4(5), 767-774, (2008). https://doi.org/10.1142/S1793042108001754
Pathan, M. A., and Khan, W. A., Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials, Mediterr. J. Math., 12, 679-695, (2015). https://doi.org/10.1007/s00009-014-0423-0
Pathan, M. A., and Khan, W. A., A new class of generalized polynomials associated with Hermite and Euler polynomials, Mediterr. J. Math., 13, 913-928, (2016). https://doi.org/10.1007/s00009-015-0551-1
Pathan, M. A., and Khan, W. A., Some implicit summation formulas and symmetric identities for the generalized Hermite-Euler polynomials, East-West J. Maths., 16(1), 92-109, (2014).
Sun, Z. W., Introduction to Bernoulli and Euler polynomials, a lecture given in Taiwan on June 6, 2002.
Srivastava, H. M., and Manocha, H. L., A treatise on generating functions, Ellis Horwood Limited. Co. New York, 1984.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).