Existence and non-existence of solutions for a (p,q)-Laplacian Steklov system

  • Belhadj Karim University Moulay Ismail
  • Youness Oubalhaj University Moulay Ismail
  • Abdellah ZErouali Regional Centre of Trades Education and Training

Résumé

In this paper, we study the existence and non-existence of a weak solutions to the following system:
$$\left\{
\begin{array}{ll}
\Delta_p u=\Delta_q v=0& \mbox{ in }\Omega\\
|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda m|u|^{p-2} u-\varepsilon[(\alpha+1)|u|^{\alpha-1}u |v|^{\beta+1}-f] & \mbox{ on }\partial\Omega\\
|\nabla v|^{q-2}\frac{\partial v}{\partial \nu}=\lambda n|v|^{q-2} v-\varepsilon[(\beta+1)|v|^{\beta-1}v |u|^{\alpha+1}-g] \mbox{ on } \partial\Omega,
\end{array}
\right.$$
where $\Omega$ is a bounded domain in $\mathbb{R}^N$ $(N\geq2)$ with a smooth boundary $\partial\Omega$, $\Delta_pu=\mbox{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian, $\frac{\partial}{\partial\nu}$ is the outer normal derivative, $\varepsilon\in\{0, 1\}$, $ m, n$, $f$ and $g$ are functions that satisfy some conditions.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Biographie de l'auteur

Youness Oubalhaj, University Moulay Ismail

Faculty of Sciences and Technics

Références

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Func. Anal. Vol.122, Iss. 2,(1994) 519-543. https://doi.org/10.1006/jfan.1994.1078

A. Anane, O. Chakrone, B. Karim and A. Zerouali, Existence for an elliptic system with nonlinear boundary conditions. Bol. Soc. Parana. Mat.(3).(2010), 28, 49-56. https://doi.org/10.5269/bspm.v28i2.11313

A. Anane, O. Chakrone, B. Karim and A. Zerouali, Eigenvalues for the Steklov problem,Int. J. Math. Sat.7(2010), no. W10,67-72. https://doi.org/10.1016/j.na.2009.11.039

C. Atkinson and C. R.Champion, On some Boundary Value Problems for the equation ∇.(F(|∇w|)∇w) = 0, Proc.Roy.Soc.London A, 448(1995), 269-279. https://doi.org/10.1098/rspa.1995.0016

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents. Nonlinear Analysis: Theory, Methods and Applications,(1995), 24(11), 1639-1648. https://doi.org/10.1016/0362-546X(94)E0054-K

L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations. NoDEA Nonlinear Differential Equations and Appl.,9(3)(2002), 309-323. https://doi.org/10.1007/s00030-002-8130-0

J. F. Bonder, S. Mart'ınez and J. D. Rossi, Existence results for Gradient elliptic systems with nonlinear boundary conditions. NoDEA Nonlinear Differential Equations and Appl.Vol. 14, Num. 1-2(2007), 153-179. https://doi.org/10.1007/s00030-007-5015-2

Bozhkov, Y,;Mitidieri, E.; Existence of multiple solutions for quasilinear systems via bering method, J. Differential Equations, 190(2003),239-267. https://doi.org/10.1016/S0022-0396(02)00112-2

A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004) 30-42. https://doi.org/10.1016/j.jmaa.2004.05.041

E. A. EL-Zahrani and H. M Serag, Existence of weak solutions for Nonlinear Elliptic systems on RN . Electronic Journal of Differential equations, Vol. 2006(2006); No. 69, 1-10.

P. Felmer, R. F. Manasevich and F. de Th'elin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems. Comm. Part. Diff. Equa., 17 (1992), 2013-2029. https://doi.org/10.1080/03605309208820912

O. Torn'e, Steklov problem with an indefinite weight for the p-Laplacien, Electronic Journal of Differential Equations, Vol. 2005(2005), No. 87, pp. 1-8.

Publiée
2022-12-23
Rubrique
Articles