Existence and non-existence of solutions for a (p,q)-Laplacian Steklov system
Résumé
In this paper, we study the existence and non-existence of a weak solutions to the following system:
$$\left\{
\begin{array}{ll}
\Delta_p u=\Delta_q v=0& \mbox{ in }\Omega\\
|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda m|u|^{p-2} u-\varepsilon[(\alpha+1)|u|^{\alpha-1}u |v|^{\beta+1}-f] & \mbox{ on }\partial\Omega\\
|\nabla v|^{q-2}\frac{\partial v}{\partial \nu}=\lambda n|v|^{q-2} v-\varepsilon[(\beta+1)|v|^{\beta-1}v |u|^{\alpha+1}-g] \mbox{ on } \partial\Omega,
\end{array}
\right.$$
where $\Omega$ is a bounded domain in $\mathbb{R}^N$ $(N\geq2)$ with a smooth boundary $\partial\Omega$, $\Delta_pu=\mbox{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian, $\frac{\partial}{\partial\nu}$ is the outer normal derivative, $\varepsilon\in\{0, 1\}$, $ m, n$, $f$ and $g$ are functions that satisfy some conditions.
Téléchargements
Références
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Func. Anal. Vol.122, Iss. 2,(1994) 519-543. https://doi.org/10.1006/jfan.1994.1078
A. Anane, O. Chakrone, B. Karim and A. Zerouali, Existence for an elliptic system with nonlinear boundary conditions. Bol. Soc. Parana. Mat.(3).(2010), 28, 49-56. https://doi.org/10.5269/bspm.v28i2.11313
A. Anane, O. Chakrone, B. Karim and A. Zerouali, Eigenvalues for the Steklov problem,Int. J. Math. Sat.7(2010), no. W10,67-72. https://doi.org/10.1016/j.na.2009.11.039
C. Atkinson and C. R.Champion, On some Boundary Value Problems for the equation ∇.(F(|∇w|)∇w) = 0, Proc.Roy.Soc.London A, 448(1995), 269-279. https://doi.org/10.1098/rspa.1995.0016
L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents. Nonlinear Analysis: Theory, Methods and Applications,(1995), 24(11), 1639-1648. https://doi.org/10.1016/0362-546X(94)E0054-K
L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations. NoDEA Nonlinear Differential Equations and Appl.,9(3)(2002), 309-323. https://doi.org/10.1007/s00030-002-8130-0
J. F. Bonder, S. Mart'ınez and J. D. Rossi, Existence results for Gradient elliptic systems with nonlinear boundary conditions. NoDEA Nonlinear Differential Equations and Appl.Vol. 14, Num. 1-2(2007), 153-179. https://doi.org/10.1007/s00030-007-5015-2
Bozhkov, Y,;Mitidieri, E.; Existence of multiple solutions for quasilinear systems via bering method, J. Differential Equations, 190(2003),239-267. https://doi.org/10.1016/S0022-0396(02)00112-2
A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004) 30-42. https://doi.org/10.1016/j.jmaa.2004.05.041
E. A. EL-Zahrani and H. M Serag, Existence of weak solutions for Nonlinear Elliptic systems on RN . Electronic Journal of Differential equations, Vol. 2006(2006); No. 69, 1-10.
P. Felmer, R. F. Manasevich and F. de Th'elin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems. Comm. Part. Diff. Equa., 17 (1992), 2013-2029. https://doi.org/10.1080/03605309208820912
O. Torn'e, Steklov problem with an indefinite weight for the p-Laplacien, Electronic Journal of Differential Equations, Vol. 2005(2005), No. 87, pp. 1-8.
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).