On exponential stabilization of a nonlinear neutral wave equation

  • Abdelkarim Kelleche University Djilali Bounaama
  • Amirouche Berkani University Mohamed El Bachir El Ibrahimi

Résumé

This work aims to study a nonlinear wave equation subject to a delay of neutral type. The nonlinearity and the delay appear in the second time derivative. In spite of the fact that delays by nature, have an instability effect on the structures, the strong damping is sufficient to allow the system to reach its equilibrium state with an exponential manner. The difficulties arising from the nonlinearity have been overcome by using an inequality due to a Sobolev embedding theorem. The main result has been established without any condition on the coefficient of the neutral delay.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Bibliographies de l'auteur

Abdelkarim Kelleche, University Djilali Bounaama

Faculty of sciences

Amirouche Berkani, University Mohamed El Bachir El Ibrahimi

Faculty of Mathematics and Informatics

Références

T. Candan and R. S. Dahiya, Positive solutions of first-order neutral differential equations, Appl. Math. Letters, 22, 1266-1270, (2009). https://doi.org/10.1016/j.aml.2008.02.019

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira,Existence and uniform decay of nonlinear viscoelastic equation with strong damping. Math. Method. Appl. Sci. 24, 1043-1053, (2001). https://doi.org/10.1002/mma.250

M. M. Cavalcanti, V. N. Domingos Cavalcanti, J.S. Prates Filho and J.A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ Integral Equ. 14(1), 85-116, (2001). https://doi.org/10.57262/die/1356123377

H. Chen, Some improved criteria on exponential stability of neutral differential equation Adv. Difference Eqs. 170, (2012). https://doi.org/10.1186/1687-1847-2012-170

Q. Chuanxi and G. Ladas, Existence of positive solutions for neutral differential equations, J. Appl. Math. Simul. 2, 267-276, (1989). https://doi.org/10.1155/S1048953389000213

R. Datko, J. Lagnese and M. P. Polis, An example of the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24, 152-156, (1986). https://doi.org/10.1137/0324007

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26, 697-713, (1988). https://doi.org/10.1137/0326040

J. Ferreira and D. C. Pereira,On a hyperbolic degenerate evolution equation with strong dissipation, Inter J. Math. Math. Sci., 15, 543-552, (1992). https://doi.org/10.1155/S016117129200070X

J. Ferreira and M. Rojas, On global weak solutions of a nonlinear evolution equation in noncylindrical domain, Proceedings of the 9th International Colloqium on Differential Equations Ed. VSP, 155 -162, (1999). https://doi.org/10.1515/9783112318973-024

G. Fragnelli and C. Pignotti, Stability of solutions to nonlinear wave equations with switching time-delay, Dyn. Partial Differ. Equ., 13, 31-51, (2016). https://doi.org/10.4310/DPDE.2016.v13.n1.a2

S. Gerbi and B. Said-Houari, Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term, Appl. Math. Comp., 218(24), 11900-11910, (2012). https://doi.org/10.1016/j.amc.2012.05.055

I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press - Oxford, 1991.

J. K. Hale, Theory of Functional Di erential Equations, Springer-Verlag, New York, 1997.

J. K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, vol. 99, Springer Verlag, New York, 2003.

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. https://doi.org/10.1007/978-94-017-1965-0

S. Nicaise and C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, DCDS-S, 9(3), 791-813, (2016). https://doi.org/10.3934/dcdss.2016029

S. Nicaise and C. Pignotti, Well-posedness and stability results for nonlinear abstract evolution equations with time delays, J. Evol. Equ. 18, 947-971 (2018). https://doi.org/10.1007/s00028-018-0427-5

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45(5), 1561-1585, (2012). https://doi.org/10.1137/060648891

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, E. J. Diff. Equ, 41(1-20), (2001).

S. Nicaise, J. Valein and E. Fridman, Stabilization of the heat and the wave equations with boundary time varying delays, DCDS-S, 559-581, (2009). https://doi.org/10.3934/dcdss.2009.2.559

S. K. Ntouyas, Y. G. S cas and P. Ch. Tsamatos, Existence results for initial value problems for neutral functional differential equations, J. Di. Eqs. 114(2), 527-537, (1994). https://doi.org/10.1006/jdeq.1994.1159

S. K. Ntouyas and D. O'Regan, Existence results for semilinear neutral functional differential inclusions with nonlocal conditions, Di . Eqs. Appl., 1(1), 41-65, (2009). https://doi.org/10.7153/dea-01-03

C. Pignotti, Stability results for second-order evolution equations with memory and switching time-delay. J. Dyn. Differ. Equ., 29(4), 1309-1324, (2016). https://doi.org/10.1007/s10884-016-9545-3

T. Rojsiraphisal and P. Niamsup, Exponential stability of certain neutral differential equations, Appl. Math. Comput., 217, 3875-3880, (2010). https://doi.org/10.1016/j.amc.2010.09.047

N.-e. Tatar, Exponential decay for a neutral wave equation. J. Appl. Analy. Comput., 7(4), 1267-1274, (2017). https://doi.org/10.11948/2017077

N.-e. Tatar, Exponential decay for a neutral one-dimensional viscoelastic equation. Hacettepe Journal of Mathematics and Statistics, 47(3), 625-635, (2018).

G.Q.Xu, S.P.Yung and L.K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM: COCV., 12 (4), 770-785, (2006). https://doi.org/10.1051/cocv:2006021

Publiée
2022-12-23
Rubrique
Articles