General decay for second-order abstract viscoelastic equation in Hilbert spaces with time delay
Résumé
The paper is concerned with a second-order abstract viscoelastic equation with time delay and a relaxation function satisfying $ h^{\prime}(t)\leq -\zeta(t) G(h(t))$. Under a suitable conditions, we establish an explicit and general decay rate results of the energy by introducing a suitable Lyaponov functional and some proprieties of the convex functions. Finally, some applications are given. This work generalizes the previous results without time delay term to those with delay.
Téléchargements
Références
Alabau-Boussouira F, Cannarsa P and Sforza D. Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(2008), 1342-1372. DOI: https://doi.org/10.1016/j.jfa.2007.09.012
F. Alabau-Boussouira, P. Cannarsa. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. 347(2009), no. 15-16, 867-872. DOI: https://doi.org/10.1016/j.crma.2009.05.011
K. Ammari, S. Nicaise and C. Pignotti. Feedback boundary stabilization of wave equations with interior delay. Syst. Control Lett. 59(2010), 623-628. DOI: https://doi.org/10.1016/j.sysconle.2010.07.007
V. Arnold. Mathematical methods of classical mechanics. New York: Springer, 1989. DOI: https://doi.org/10.1007/978-1-4757-2063-1
A. Batkai, S. Piazzera. Semigroups for delay equations. Research Notes in Mathematics, 10. AK Peters, Ltd., Wellesley, MA, (2005). DOI: https://doi.org/10.1201/9781439865682
F. Belhannache, M. M. Algharabli and S.A. Messaoudi. Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions. J. Dyna. Control Syst. 26(2020), no. 1, 45-67. DOI: https://doi.org/10.1007/s10883-019-9429-z
A. Benaissa, A. K. Benaissa and S. A. Messaoudi. Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks. J. Math. Phys. 53(2012), no. 12, 123514 DOI: https://doi.org/10.1063/1.4765046
Y. Boukhatem, B. Benabderrahmane. General decay for a viscoelastic equation of variable coefficients with a timevarying delay in the boundary feedback and acoustic boundary conditions. ACTA Math. Sci. 37(2017), no. 5, 1453-1471. DOI: https://doi.org/10.1016/S0252-9602(17)30084-X
Y. Boukhatem, B. Benabderrahmane. General Decay for a Viscoelastic Equation of Variable Coefficients in the Presence of Past History with Delay Term in the Boundary Feedback and Acoustic Boundary Conditions. ACTA Appl. Math. 154(2018), no. 1, 131-152. DOI: https://doi.org/10.1007/s10440-017-0137-y
Y. Boukhatem, B. Benabderrahmane, Existence and exponential decay of solutions for the variable coefficients wave equations. Analele Universitatii Oradea Fasc. Matematica, Tom XXIII (2), (2016), 93-108.
M. M. Cavalcanti,A. D. Cavalcanti, I. Lasiecka and X. Wang. Existence and sharp decay rate estimates for a von Karman system with long memory. NA: Real World Appl. 22(2015), 289-306. DOI: https://doi.org/10.1016/j.nonrwa.2014.09.016
H. Chellaoua, Y. Boukhatem. Optimal decay for second-order abstract viscoelastic equation in Hilbert spaces with infinite memory and time delay. Math. Meth. Appl. Sci. 44(2021), no. 2, 2071-2095. DOI: https://doi.org/10.1002/mma.6917
H. Chellaoua, Y. Boukhatem. Stability results for second-order abstract viscoelastic equation in Hilbert spaces with time-varying delay. Z. Angew. Math. Phys. 72(2021), no. 2, 1-18. DOI: https://doi.org/10.1007/s00033-021-01477-y
C. M. Dafermos. Asymptotic stability in viscoelasticity. Arch. Rational Mech. An. 37(1970), 297-308. DOI: https://doi.org/10.1007/BF00251609
R. Datko. Two questions concerning the boundary control of certain elastic systems, J. Differ. Equa. 92(1991), no. 1, 27-44. DOI: https://doi.org/10.1016/0022-0396(91)90062-E
M. Fabrizio, S. Polidoro, Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81(2002), no. 6, 1245-1264. DOI: https://doi.org/10.1080/0003681021000035588
J. H. Hassan, S. A. Messaoudi. General decay rate for a class of weakly dissipative second-order systems with memory. Math. Meth. Appl. Sci. 42(2019), no. 8, 2842-2853. DOI: https://doi.org/10.1002/mma.5554
J. R. Kang. General decay for viscoelastic plate equation with p-Laplacian and time-varying delay. Bound. Value Probl. 2018(2018), no. 1, 1-11. DOI: https://doi.org/10.1186/s13661-018-0942-x
M. Kirane, B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62(2011), 1065-1082. DOI: https://doi.org/10.1007/s00033-011-0145-0
I. Lasiecka, S. A. Messaoudi and M. I. Mustafa. Note on intrinsic decay rates for abstract wave equations with memory. J Math Phys, 54(2013), no. 3, 031504. DOI: https://doi.org/10.1063/1.4793988
Z. Liu, C.Gao and Z. B. Fang. A general decay estimate for the nonlinear transmission problem of weak viscoelastic equations with time-varying delay. J. Math. Phys. 60(2019), no. 10, 101507. DOI: https://doi.org/10.1063/1.5103177
S. A. Messaoudi, General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2008), no. 2, 1457-1467. DOI: https://doi.org/10.1016/j.jmaa.2007.11.048
Messaoudi S. General stability in viscoelasticity, viscoelastic and viscoplastic materials, Mohamed El-Amin. IntechOpen (2016). DOI: https://doi.org/10.5772/64217
J. E. Mu˜noz Rivera, A. Peres Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials. Q. Appl. Math. 59(2001), no. 3, 557-578. DOI: https://doi.org/10.1090/qam/1848535
J. E. Mu˜noz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory. J. Math. Anal. Appl. 286(2003), no. 2, 692-704. DOI: https://doi.org/10.1016/S0022-247X(03)00511-0
M. I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete Conti. Dyn-A, 35(2014), no. 3, 1179. DOI: https://doi.org/10.3934/dcds.2015.35.1179
M. I. Mustafa. Memory-type plate system with nonlinear delay. Adv. Pure Appl. Math. 8(2017), no. 4, 227-240. DOI: https://doi.org/10.1515/apam-2016-0111
M. I. Mustafa. Asymptotic stability for the second order evolution equation with memory. J. Dyna. Control Syst. 25(2018), no. 2, 263-273. DOI: https://doi.org/10.1007/s10883-018-9410-2
M. I. Mustafa. Optimal decay rates for the abstract viscoelastic equation. J. Evol. Equ. (2019), 1-17. DOI: https://doi.org/10.1007/s00028-019-00488-7
M. I. Mustafa. Optimal decay rates for the viscoelastic wave equation. Math. Meth. Appl. Sci. (2017), 1-13. DOI: https://doi.org/10.1002/mma.4604
S. Nicaise, C. Pignotti. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(2006), 1561-1585. DOI: https://doi.org/10.1137/060648891
S. Nicaise, J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM Control Optim. Calc. Var. 16(2010), no. 2, 420-456. DOI: https://doi.org/10.1051/cocv/2009007
V. Pata, Exponential stability in linear viscoelasticity. Q. Appl. Math. 64(2006), no. 3, 499-513. DOI: https://doi.org/10.1090/S0033-569X-06-01010-4
T. J. Xiao, J. Liang. Coupled second order semilinear evolution equations indirectly damped via memory effects. J. Differ. Equa. 254(2013), no. 5, 2128-2157. DOI: https://doi.org/10.1016/j.jde.2012.11.019
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).