On new difference sequence spaces via Cesàro mean
Abstract
In the present article, we define certain a set of new classes of sequence spaces by using Ces\`{a}ro mean and difference operator $\Delta^r\;\;r\in\mathbb{N}_0=\{0,1,2,3,\dots\}$. Also, we study the topological structures of the defined classes and determine their $\alpha-,\beta-$ and $\gamma-$ duals. Matrix transformations of given classes with their basic sequence spaces are characterized.
Downloads
References
Z. U. Ahmad, M. Mursaleen, Kothe-Toeplitz duals of some new sequence spaces and their martix maps, Publ. Inst. Math. (Beograd), 42(56) (1987) 57-61.
B. Altay, F. Bassar, Some paranormed sequence spaces of non absolute type derived by weighted mean, J. Math. Anal. Appl. 319(2) (2006) 494-508. DOI: https://doi.org/10.1016/j.jmaa.2005.06.055
C. Asma, R. Colak, On the Kothe-Toeplitz duals of some generalized sets of difference sequences, Demonstratio Math. 33 (2000) 797-803. DOI: https://doi.org/10.1515/dema-2000-0412
P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219(18) (2013) 9737-9742. DOI: https://doi.org/10.1016/j.amc.2013.03.073
P. Baliarsingh, On a fractional difference operator, Alexandria Eng. J. 55(2) (2016) 1811-1816. DOI: https://doi.org/10.1016/j.aej.2016.03.037
M. Basarir, On the generalized Riesz B-difference sequence spaces, Filomat, 24(4)(2010) 35-52. DOI: https://doi.org/10.2298/FIL1004035B
M. Et, R. Colak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995) 377-386.
K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, Second edition, J. Math. Anal. Appl., 180 (1993)223-238. DOI: https://doi.org/10.1006/jmaa.1993.1398
H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2) (1981) 169-176. DOI: https://doi.org/10.4153/CMB-1981-027-5
I. J. Maddox, Paranormed sequence spaces generated by in nite matrices, Proc. Cambridge Philos. Soc., 64 (1968) 335-340. DOI: https://doi.org/10.1017/S0305004100042894
I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(2) (1967) 345-355. DOI: https://doi.org/10.1093/qmath/18.1.345
E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and martix transformations, Acta Math. Sin. (English Series), 23(3) (2007) 521-532. DOI: https://doi.org/10.1007/s10114-005-0719-x
H.K. Mishra, S. Nanda., P. Baliarsingh, On new sequence spaces using modulus function, Panamerican Math. J. 27(1) (2017) 52-66
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).