Viscosity Iterative Algorithm] {Accelerated extragradient algorithm for equilibrium and fixed point problems for countable family of certain multi-valued mappings

  • Hammed Anuoluwapo Abass University of KwaZulu-Natal
  • Oluwatosin T. Mewomo University of KwaZulu-Natal

Resumen

In this paper, we introduce a viscosity-type extragradient algorithm for finding a common point of the solution of a pseudomonotone equilibrium problem and a fixed point problem of an infinite family of multi-valued quasi-nonexpansive mappings in real Hilbert space. Using our algorithm, we state and prove a strong convergence result of our iteration sequences. An application to variational inequality problem was considered. Lastly, we give a numerical example of our main result. The result presented in this paper extends and complements some recent results in literature.

Descargas

La descarga de datos todavía no está disponible.

Citas

H. A. Abass, F. U. Ogbuisi and O. T. Mewomo, Common solution of split equilibrium problem with no prior knowledge of operator norm, U. P. B Sci. Bull., Series A, 80 no. 1, 2018.

H. A. Abass, C. C. Okeke and O. T. Mewomo, On Split Equality Mixed Equilibrium Problem and Fixed Point Problem of Generalized Ki-Strictly Pseudocontractive Multi-valued Mappings, Dyn. Contin. Discrete Impuls., Series B: Applications and Algorithms, 25, no. 6, (2018), 369-395.

H. A. Abass, K. O. Aremu, L. O. Jolaoso and O.T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problem, J. Nonlinear Funct. Anal. 2020, (2020), Article ID 6. https://doi.org/10.23952/jnfa.2020.6 DOI: https://doi.org/10.23952/jnfa.2020.6

H. A. Abass, C. Izuchukwu, O. T. Mewomo, Q. L. Dong, Strong convergence of an inertial forward-backward splitting method for accretive operators in real Banach space, Fixed Point Theory, 20, no. 2, (2020), 397-412. https://doi.org/10.24193/fpt-ro.2020.2.28 DOI: https://doi.org/10.24193/fpt-ro.2020.2.28

H. A. Abass, C. Izuchukwu and K. O. Aremu, A common solution of family of minimization and fixed point problem for multi-valued type-one demicontractive-type mappings, Adv. Var. Inequal., 21, no. 2, (2018), 94-108.

P. N. Anh, An LQP regularization method for equilibrium problems on ployhedral. Vietnam J. Math., 36, (2008), 209-228.

P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization, 62, no. 2, (2013), 271-283. https://doi.org/10.1080/02331934.2011.607497

F. Alvarez and H. Attouch, An Inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, (2001), 3-11.

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, (1994), 123-145.

K. Goebel and S. Reich, Uniform convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York (1984).

J. W. Peng, Iterative algorithms for mixed equilibrium problems, strict pseudocontractions and monotone mappings, J. Optim. Theory Appl. , 144, (2010), 107-119. https://doi.org/10.1007/s10957-009-9585-5 DOI: https://doi.org/10.1007/s10957-009-9585-5

D. J. Wen Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings. Fixed Point Theory Appl., 2014:232. https://doi.org/10.1186/1687-1812-2014-232 DOI: https://doi.org/10.1186/1687-1812-2014-232

D. Q. Tran, M. L. Dung and V. H. Nguyen, Extragradient algorithms extended to equilibrium poblem. Optimization, 57, (2008), 749-776. https://doi.org/10.1080/02331930601122876 DOI: https://doi.org/10.1080/02331930601122876

P. T. Vuong, J. J. Strodiot and V. H. Nguyen Extragradient methods and linear algorithms for solving Ky Fan Inequalities and fixed point poblems. J. Optim. Theory Appl., 155, (2012), 605-627. https://doi.org/10.1007/s10957-012-0085-7 DOI: https://doi.org/10.1007/s10957-012-0085-7

P. H. Anh A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization, (2013), 271-283. https://doi.org/10.1080/02331934.2011.607497 DOI: https://doi.org/10.1080/02331934.2011.607497

G. M. Korelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12, (1976), 747-756.

S. Lemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal., 71, (2009), 2080-2089. https://doi.org/10.1016/j.na.2009.03.064 DOI: https://doi.org/10.1016/j.na.2009.03.064

O. A. Boikanyo, G. Morosanu, A proximal point algorithm converging strongly for general errors, Optim. Lett., 4, (2010),635-641. https://doi.org/10.1007/s11590-010-0176-z DOI: https://doi.org/10.1007/s11590-010-0176-z

H .K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 2, (2002), 240-252.

C E. Chidume, Geometric properties of Banach spaces and nonlinear spaces and nonlinear iterations , Springer Verlag Series, Lecture Notes in Mathematics, ISBN 978-84882-189-7, (2009). https://doi.org/10.1007/978-1-84882-190-3 DOI: https://doi.org/10.1007/978-1-84882-190-3

S. Chang, J. K. Kim and X. R. Wang, Modified Block iterative algorithm for solving convex feasiblity problems in Banach spaces, J. Ineq. Appl., (2010), Article ID 869684, 14 pages, https://doi.org/10.1155/2010/869684 DOI: https://doi.org/10.1155/2010/869684

C. E. Chidume and M. E. Okpala, Fixed point iteration for a countable family of multivalued strictly pseudocontractivetype mappings, SpringerPlus, (2015). https://doi.org/10.1186/s13663-015-0365-7 DOI: https://doi.org/10.1186/s40064-015-1280-4

W. Cholamjiak, P. Cholamjiak and S. Suantai, Convergence of iterative schemes for solving fixed point of multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., 8, (2015), 1245-1256. https://doi.org/10.22436/jnsa.008.06.31 DOI: https://doi.org/10.22436/jnsa.008.06.31

P. Cholamjiak and S. Suantai, Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions, J. Glob. Optim., 54, (2012), 185-197. https://doi.org/10.1007/s10898-011-9756-4 DOI: https://doi.org/10.1007/s10898-011-9756-4

W. Laowang and B. Panyanak, Strong and ∆-convergence theorems for multivalued mappings in CAT(0) spaces, J. Ineq. Appl., 2009 (2009), Art. Id 730132, 16 pages. https://doi.org/10.1155/2009/730132 DOI: https://doi.org/10.1155/2009/730132

B. Martinet, Regularisation d' inequations varaiationnelles par approximations successives, Rev. Fr. Inform. Rec. Oper. , 4, (1970), 154-158. https://doi.org/10.1051/m2an/197004R301541 DOI: https://doi.org/10.1051/m2an/197004R301541

B. T. Polyak, Some methods of speeding up the convergence of iterates methods, U.S.S.R Comput. Math. Phys. 4(5),1-17, (1964). https://doi.org/10.1016/0041-5553(64)90137-5 DOI: https://doi.org/10.1016/0041-5553(64)90137-5

R. T. Rockafellar, Wets R. Variational analysis. Berlin: Springer, (1988).

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control. Optim., 14, (1976), 877-898. https://doi.org/10.1137/0314056 DOI: https://doi.org/10.1137/0314056

S. Suantai and P. Cholamjiak, Algorithms for solving generalized equilibrium problems and fixed points of nonexpansive semigroups in Hilbert spaces, Optimization, 63, (2014), 799-815. https://doi.org/10.1080/02331934.2012.684355 DOI: https://doi.org/10.1080/02331934.2012.684355

S. Suantai, W. Cholamjiak and P. Cholamjiak, An implicit iteration process for a finite family of multivalued mappings in Banach spaces, Appl. Math. Lett., 25, (2012), 1656-1660. https://doi.org/10.1016/j.aml.2012.01.032 DOI: https://doi.org/10.1016/j.aml.2012.01.032

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).

Publicado
2022-12-23
Sección
Articles