The Global existence and blow-up of solutions for a class of Steklov parabolic problems
Résumé
In this paper, we study weak solutions to the following Steklov parabolic problem: $$ \begin{cases} u_t - \Delta_p u + \vert u \vert^{p-2} u = 0 \quad \quad \text{ in } ~ \Omega ,~ t>0 , \\ \vert \nabla u \vert^{p-2} \frac{\partial u}{\partial \nu }= \lambda \vert u \vert ^{q} u \quad \quad \quad ~ \text{ on }~ \partial \Omega ,~ t>0 , \\ u(x;0)=u_0 (x) \quad \quad \quad \quad \quad ~~ \text{ in } ~ \Omega . \end{cases} $$ where $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain for $ n \geq 2$ with smooth boundary $ \partial \Omega$, $\lambda > 0 $. Here, $u_t $ denote the partial derivative with respect to the time variable $t$ and $ \nabla u$ denotes the one with respect to the space variable $x$. We prove theorems of existence of weak solutions, via Galerkin approximation. Moreover, we show the existence of solutions which blow up in a finite time.Téléchargements
Références
J. Arrieta, A.N. Carvalho, A. R. Bernal., Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. Partial Differential Equations, 25, 1–37, (2000).
I. Babuska, J.E. Osborn., Hand-Book of Numerical Analysis, Finite Element Method, North-Holland, Amsterdam.2, 641-787, (1991)
I. Bejenaru, J.I. Diaz, I. Vrabie., An abstract approximate controllability result and applications to elliptic and parabolic system with dynamics boundary conditions. Electron. J. Differential Equations, 50, 1–19, (2001).
J. v. Below, M. Cuesta, G. P. Mailly., Qualitative results for parabolic equations involving the p-Laplacian under dynamical boundary conditions. NWEJM, 4, 59-97, (2018).
S. Bergman, M. Schiffer., Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, (1953).
A. Bermudez, R. Rodriguez, D. Santamarina., A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math., 87, 201–227, (2000).
A.P. Calderón., On a inverse boundary value problem. In: Seminar in numerical analysis and its applications to continuum physics. Soc. Brasileira de Matemaática., 52, 65–73, (1980).
P. Colli, J.F. Rodrigues., Diffusion through thin layers with high specific heat. Asymptot. Ana, 3, 249–263, (1990).
JI. Díaz, G. Hetzer, L. Tello., An energy balance climate model with hysteresis. Nonlinear Analysis, 64, 2053–2074, (2005).
JI. Díaz, L. Tello. , On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems Series S, 1, 253–262, (2008).
J. Escher., Quasilinear parabolic systems with dynamical boundary conditions. Comm. Partial Differential Equations, 18, 1309–1364, (1993).
J.F. Escobar., The geometry of the first non-zero Steklov eigenvalue. J. Funct Anal, 150, 544–556, (1997).
A. Lamaizi, A. Zerouali, O. Chakrone, B. Karim., Global existence and blow-up of solutions for parabolic equations involving the Laplacian under nonlinear boundary conditions. Turkish Journal of Mathematics, 45, 2406-2418, (2021).
Y. Liu, J. Zhao., Nonlinear parabolic equations with critical initial conditions J(u0) = d or I(u0) = 0. Nonlinear Anal, 58, 873-883, (2004).
A. Rodríguez-Bernal, A. Tajdine,. Nonlinear balance for reaction diffusion equations under nonlinear boundary conditions: dissipativity and blow-up. J. Differential Equations, 169, 332–372, (2001).
J.F. Rodrigues, V. A. Solonnikov, F. Yi., On a parabolic system with time derivative in the boundary conditions and related free boundary problems. Math. Ann, 315, 61–91, (1999).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).