On monogenity of certain pure number fields defined by $x^{2^r\cdot7^s}-m$

Abstract

Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{2^r\cdot7^s}-m\in \mathbb{Z}[x]$, where $m\neq \pm 1$ is a square free integer, $r$ and $s$ are two positive integers. In this paper, we study the monogenity of $K$. We prove that if $m\not\equiv 1\md{4}$ and $\overline{m}\not\in\{\pm \overline{1},\pm \overline{18},\pm \overline{19}\} \md{49}$, then $K$ is monogenic. But if $r\geq 2$ and $m\equiv 1\md{16}$ or $s\geq 3$, $\overline{m}\in\{ \overline{1}, \overline{18}, -\overline{19}\} \md{49}$, and $\nu_7(m^6-1)\geq 4$, then $K$ is not monogenic. Some illustrating examples are given at the end of the paper.

Downloads

Download data is not yet available.

Author Biographies

lhoussain El Fadil, University Fez Morocco

Faculty of Sciences Dhar-Mehraz

Omar Kchit, University Fez Morocco

Faculty of Sciences Dhar El Mahraz

References

Ahmad, S., Nakahara, T., and Husnine, S. M., Power integral bases for certain pure sextic fields, Int. J. Number Theory 10(8), 2257–2265, (2014). DOI: https://doi.org/10.1142/S1793042114500778

Ahmad, S., Nakahara, T., and Husnine, S. M., On certain pure sextic fields related to a problem of Hasse, Int. J. Algebra Comput. 26(3), 577–583, (2016). DOI: https://doi.org/10.1142/S0218196716500259

Ahmad, S., Nakahara, T., and Husnine, S. M.„ On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math. 7, 19–24, (2011).

Ben Yakkou, H., Chillali, A., and EL Fadil, L., On power integral bases for certain pure number fields defined by x2r·5s− m, Commun. Algebra 49(7), 2916-2926, (2021). DOI: https://doi.org/10.1080/00927872.2021.1883642

Ben Yakkou, H. and El Fadil, L., On monogenity of certain pure number fields defined by xpr− m, Int. J. Number Theory, 17(10), 2235–2242, (2021). DOI: https://doi.org/10.1142/S1793042121500858

Ben Yakkou, H. and Kchit, O., On power integral bases for certain pure number fields defined by x3r− m, S˜ao Paulo J. Math. Sci. (2021). DOI: https://doi.org/10.1007/s40863-021-00251-2

Choulli, H., El Fadil, L., and Kchit, O., On monogenity of certain number fields defined by x60 − m. Acta Math. Vetnam., 1-11 (2022). DOI: https://doi.org/10.1007/s40306-022-00481-2

Cohen, H., A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag Berlin Heidelberg (1993). DOI: https://doi.org/10.1007/978-3-662-02945-9

Dedekind, R., Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der hoheren Kongruenzen, Gottingen Abhandlungen 23, 1–23, (1878).

El Fadil, L., Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci. 2(13-16), 601–606, (2007). DOI: https://doi.org/10.12988/ijcms.2007.07058

El Fadil, L., On Newton polygon’s techniques and factorization of polynomial over henselian valued fields, J. Algebra its Appl. 19(10), 2050188, (2020). DOI: https://doi.org/10.1142/S0219498820501881

El Fadil, L., On power integral bases for certain pure number fields defined by x12 − m, Pub. Math. 100(1-2), 219-231, (2022). DOI: https://doi.org/10.5486/PMD.2022.9138

El Fadil, L., On power integral bases for certain pure number fields defined by x24 − m, Studia Sci. Math. Hungarica, 57(3), 397–407, (2020). DOI: https://doi.org/10.1556/012.2020.57.3.1472

El Fadil, L., On power integral bases for certain pure number fields defined by x36 − m, Studia Sci. Math. Hungarica, 58(3), 371–380, (2021). DOI: https://doi.org/10.1556/012.2021.58.3.1506

El Fadil, L. and Najim, A., On power integral bases for certain pure number fields defined by x2u·3v− m, (2021). arXiv:2106.01252v2 DOI: https://doi.org/10.4064/aa210402-8-5

El Fadil, L., On power integral bases for certain pure number fields defined by x3u·7v− m, Colloc. Math., (2021). DOI: https://doi.org/10.1007/s40590-021-00388-2

El Fadil, L., On power integral bases for certain pure sextic fields, Bol. Soc. Paran. Math. 40(3s), 1–7, (2022). DOI: https://doi.org/10.5269/bspm.42373

El Fadil, L., Montes, J., and Nart, E., Newton polygons and p-integral bases of quartic number fields, J. Algebra its Appl. 11(4), 1–33, (2012). DOI: https://doi.org/10.1142/S0219498812500739

Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ. 26, 27-–41, (1984).

Gaal, I., Power integer bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comp. 18, 61–87, (1999).

Gaal, I., Diophantine equations and power integral bases, Theory and algorithm, Second edition, Boston, Birkhauser, (2019). DOI: https://doi.org/10.1007/978-3-030-23865-0

Gaal, I. and Gyory, K., Index form equations in quintic fields, Acta Arith. 89, 379–396, (1999). DOI: https://doi.org/10.4064/aa-89-4-379-396

Gaal, I., Olajos, P., Pohst, M., Power integral bases in order of composite fields, Exp. Math. 11(1), 87–90, (2002). DOI: https://doi.org/10.1080/10586458.2002.10504471

Gaal, I. and Remete, L., Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra, Number Theory Appl. 32(1), 49–61, (2014). DOI: https://doi.org/10.17654/JPANTAFeb2015_029_042

Gaal, I. and Remete, L., Integral bases and monogeneity of pure fields, J. Number Theory 173(1), 129–146, (2018). DOI: https://doi.org/10.1016/j.jnt.2016.09.009

Guardia, J., Montes, J., and Nart, E., Newton polygons of higher order in algebraic number theory, J. trans. of ams 364(1), 361–416, (2012). DOI: https://doi.org/10.1090/S0002-9947-2011-05442-5

Hameed, A. and Nakahara, T., Integral bases and relative monogeneity of pure octic fields, Bull. Math. Soc. Sci. Math. Repub. Soc. Roum. 58(106) No. 4, 419–433, (2015).

Hasse, H., Vorlesungen ¨uber Zahlentheorie, Akademie-Verlag, Berlin, (1963). DOI: https://doi.org/10.1515/9783112478202

Hensel, K., Arithmetische Untersuchungen ¨uber die gemeinsamen ausserwesentlichen Discriminantentheiler einer Gattung, J. Reine Angew. Math., 113:128–160, ISSN 0075-4102, (1894). DOI: https://doi.org/10.1515/crll.1894.113.128

Hensel, K., Theorie der algebraischen Zahlen, Teubner Verlag, Leipzig, Berlin, (1908).

Montes, J. and Nart, E., On a theorem of Ore, J. Algebra 146(2), 318–334, (1992). DOI: https://doi.org/10.1016/0021-8693(92)90071-S

Motoda, Y., Nakahara, T., and Shah, S. I. A., On a problem of Hasse, J. Number Theory 96, 326–334, (2002). DOI: https://doi.org/10.1006/jnth.2002.2805

Neukirch, J., Algebraic Number Theory, Springer-Verlag, Berlin, (1999). DOI: https://doi.org/10.1007/978-3-662-03983-0

Ore, O., Newtonsche Polygone in der Theorie der algebraischen Korper, Math. Ann. 99, 84–117,(1928). DOI: https://doi.org/10.1007/BF01459087

Petho, A. and Pohst, M., On the indices of multiquadratic number fields, Acta Arith. 153(4), 393–414, (2012). DOI: https://doi.org/10.4064/aa153-4-4

Smith, H., The monogeneity of radical extensions. Acta Arith., 198(3), 313-327, (2021). DOI: https://doi.org/10.4064/aa200811-7-10

Published
2022-12-28
Section
Articles