Some identities in quotient rings

  • Mouhamadi El Hamdaoui Sidi Mohamed Ben Abdellah University
  • Abdelkarim Boua Sidi Mohamed Ben Abdellah University
  • Gurninder S. Sandhu Patel Memorial National College https://orcid.org/0000-0001-8618-6325

Abstract

Let R be an associative ring, P a prime ideal of R: In this paper, we study the structure of the ring R=P and describe the possible forms of the generalized derivations satisfying certain algebraic identities on R: As a consequence of our theorems, we first investigate strong commutativity preserving generalized derivations of prime rings, and then examine the generalized derivations acting as (anti)homomorphisms in prime rings. Some commutativity theorems also given in semi-prime rings.

Downloads

Download data is not yet available.

References

M. Ashraf, N. U. Rehman, On commutativity of rings with derivations. Resul Math. 42(1), 3-8 (2002). https://doi.org/10.1007/BF03323547 DOI: https://doi.org/10.1007/BF03323547

K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196, New York: Marcel Dekker, Inc. (1996).

H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37(4), 443-447 (1994). DOI: 10.4153/CMB-1994-064-x. https://doi.org/10.4153/CMB-1994-064-x DOI: https://doi.org/10.4153/CMB-1994-064-x

M. Breˇsar, Semiderivations of prime rings. Proc. Amer. Math. Soc. 108 (4), 859-860 (1990). https://doi.org/10.1090/S0002-9939-1990-1007488-X DOI: https://doi.org/10.1090/S0002-9939-1990-1007488-X

M. S. Khan, S. Ali, M. Ayedh, Herstein's theorem for prime ideals in rings with involution involving pair of derivations. Commun. Algebra (to appear). https://doi.org/10.1080/00927872.2021.2014513 DOI: https://doi.org/10.1080/00927872.2021.2014513

P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sinica 11(1), 75-80 (1983).

A. Mamouni, L. Oukhtite, M. Zerra, On derivations involving prime ideals and commutativity in rings. S˜ao Paulo J. Math. Sci. 14(2), 675-688 (2020). https://doi.org/10.1007/s40863-020-00187-z DOI: https://doi.org/10.1007/s40863-020-00187-z

H. E. Mir, A. Mamouni, L. Oukhtite, Commutativity with algebraic identities involving prime ideals. Commun Korean Math. Soc. 35(3), 723-731 (2020).

N. U. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms. Glasnik Mat. 39(1), 27-30 (2004). https://doi.org/10.3336/gm.39.1.03 DOI: https://doi.org/10.3336/gm.39.1.03

N. U. Rehman, R. M. Al-Omary, R. M., N. M. Muthana, A note on multiplicative (generalized) (α, β)-derivations in prime rings. Annal. Math. Sil. 33(1), 266-275 (2019). DOI: 10.2478/amsil-2019-0008 https://doi.org/10.2478/amsil-2019-0008 DOI: https://doi.org/10.2478/amsil-2019-0008

N. U. Rehman, H. M. Alnoghashi, Action of prime ideals on generalized derivations-I. arXiv preprint arXiv:2107.06769 (2021).

S. K. Tiwari, R. K. Sharma, B. Dhara, Some theorems of commutativity on semiprime rings with mappings. Southeast Asian Bull. Math, 42(2), 279-292 (2018).

Published
2022-12-27
Section
Research Articles