Relative uniform convergence of double sequence of positive linear functions defined by Orlicz function
Resumo
In this article, we introduce the notion of relative uniform convergence of double sequence of positive linear functions defined by using Orlicz function. We also introduce different classes of relative uniform convergence sequence of functions and discuss their algebraic and topological properties.
Downloads
Referências
Y. Altin, M. Et and B. C. Tripathy, The sequence space |N¯p|(M, r, q, s) on seminormed spaces. Applied Math. Comput. 154, 423-430, (2004). DOI: https://doi.org/10.1016/S0096-3003(03)00722-7
T. J. IA. Bromwich, An Introduction to the Theory of Infinite Series. Macmillan & Co. Ltd., Newyork, (1965).
E. W. Chittenden, Relatively uniform convergence of sequences of functions. Trans. Amer. Math. Soc. 15, 197-201, (1914). DOI: https://doi.org/10.1090/S0002-9947-1914-1500972-9
K. Demirci, A. Boccuto, S. Yıldız and F. Dirik, Relative uniform convergence of a sequence of functions at a point and Korovkin-type approximation theorems. Positivity 24(10), DOI: 10.1007/s11117-019-00656-6. DOI: https://doi.org/10.1007/s11117-019-00656-6
K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators. Results Math. 69, 359-367, (2016). DOI: https://doi.org/10.1007/s00025-015-0484-9
K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference double sequence of positive linear functions, Ric. Mat. (2021) DOI:10.1007/s11587-021-00613-0(online published).
K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference sequence of positive linear functions. Trans. A. Razmadze Math. Inst. 176(1), 37-43, (2022). DOI: https://doi.org/10.1007/s11587-021-00613-0
K. R. Devi and B. C. Tripathy, On relative uniform convergence of double sequences of functions. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci (2022), DOI: 10.1007/s40010-022-00768-x (online published). DOI: https://doi.org/10.1007/s40010-022-00768-x
M. Et, Y. Altin, B. Choudhary and B. C. Tripathy, On some classes of sequences defined by sequence of Orlicz functions. Math. Ineq. Appl. 9(2), 335-342, (2006). DOI: https://doi.org/10.7153/mia-09-33
G. H. Hardy, On the convergence of certain multiple series. Proc. Camb. Philos. Soc. 19, 86-95, (1917).
J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. Israel J. Math. 10, 379-390, (1971). DOI: https://doi.org/10.1007/BF02771656
S. A. Mohiuddine, B. Hazarika and Mohammed A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronoskaya type approximation theorems. Filomat 33(14), 4549-4560, (2019). DOI: https://doi.org/10.2298/FIL1914549M
F. Moriˇcz, Extension of spaces c and co from single to double sequences. Acta Math. Hungar. 57(1-2), 129-136, (1991). DOI: https://doi.org/10.1007/BF01903811
P. K. Nath and B. C. Tripathy, Convergent complex uncertain sequences defined by Orlicz function. Ann. Univ. Craiova Math. Comput. Sci. Ser. 46(1), 139-149, (2019).
P. K. Nath and B. C. Tripathy, Statistical convergence of complex uncertain sequences defined by Orlicz function. Proyecciones J. Math. 39(2), 301-315, (2020). DOI: https://doi.org/10.22199/issn.0717-6279-2020-02-0019
A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53, 289-321, (1900). DOI: https://doi.org/10.1007/BF01448977
B. C. Tripathy and S. Mahanta, On a class of sequences related to the ℓp space defined by Orlicz functions. Soochow J. Math. 29(4), 379-391, (2003).
B. C. Tripathy and S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function. Acta Math. Appl. Sin. Engl. Ser. 20(2), 231-238, (2004). DOI: https://doi.org/10.1007/s10255-004-0163-1
B. C. Tripathy and S. Mahanta, On a class of difference sequences related to the ℓp space defined by Orlicz functions. Math. Slovaca, 57(2), 171-178, (2007). DOI: https://doi.org/10.2478/s12175-007-0007-6
B. C. Tripathy and B. Sarma, Vector valued paranormed statistically convergent double sequence spaces, Math. Slovaca 57(2), 179-188, (2007). DOI: https://doi.org/10.2478/s12175-007-0008-5
B. C. Tripathy, Y. Altin and M. Et, Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions. Math. Slovaca 58(3), 315-324, (2008). DOI: https://doi.org/10.2478/s12175-008-0077-0
B. C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function. Math. Slovaca 59(6), 767-776, (2009). DOI: https://doi.org/10.2478/s12175-009-0162-z
B. C. Tripathy and H. Dutta, On some new paranormed difference sequence spaces defined by Orlicz functions.Kyungpook J. Math. 50(1), 59-69, (2010). DOI: https://doi.org/10.5666/KMJ.2010.50.1.059
B. C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Math. Sci. 31B(1), 134-140, (2011). DOI: https://doi.org/10.1016/S0252-9602(11)60215-4
B. C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆mn -statistical convergence. An. Stiintt. Univ. “Ovidius” Constanta Ser. Mat. 20(1), 417-430, (2012). DOI: https://doi.org/10.2478/v10309-012-0028-1
Copyright (c) 2022 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).