The infimum eigenvalue for degenerate p(x)-biharmonic operator with the Hardy potentiel

Resumo

The aim of this article is to study the existence of at least one unbounded nondecreasing sequence of nonnegative eigenvalues (λk)k≥1 for a class of elliptic Navier boundary value problems involving the degenerate p(·)-biharmonic operator with q(x)-Hardy inequality by using the variational technique based on the Ljusternik-Schnirelmann theory on C1-manifolds and the theory of the variable exponent Lebesgue spaces. Also, we obtain the positivity of the infimum eigenvalue for the problem.

Downloads

Não há dados estatísticos.

Referências

A. Ancona, On strong barriers and an inequality of hardy for domains in RN , Journal of London Mathematical Society, 2.2, 274-290, (1986). DOI: https://doi.org/10.1112/jlms/s2-34.2.274

A. Ayoujil, Existence and nonexistence results for weighted fourth order eigenvalue problems with variable exponent, Boletim da Sociedade Paranaense de Matem´atica, 37.3, 55-66, (2019). DOI: https://doi.org/10.5269/bspm.v37i3.31657

A. Ayoujil, H. Belaouidel, M.Berrajaa, N.Tsouli, On a class of elliptic Navier boundary value problems involving the (p1(.), p2(.))-biharmonic operator, Mathemati˘cki Vesnik, 72.3, 196-206, (2020).

A. Ayoujil, A. El Amrouss, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electronic Journal of Differential Equations, 2011, 1-8, (2011).

A. Ayoujil, A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. T.M.A, 71.10, 4916-4926, (2009). DOI: https://doi.org/10.1016/j.na.2009.03.074

H. Belaouidel, A. Ourraoui, N. Tsouli, General quasilinear problems involving p(x) Laplacian with Robin boundary condition, Ural Mathematical Journal, 6.1, 30-41, (2020). DOI: https://doi.org/10.15826/umj.2020.1.003

A. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving p(x)-biharmonic operator, Bol. Soc. Paran. Mat, 31.1, 179-2, (2013). DOI: https://doi.org/10.5269/bspm.v31i1.15148

A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl, 300, 30-42, (2004) DOI: https://doi.org/10.1016/j.jmaa.2004.05.041

X. L. Fan, X. Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations, in RN , Nonlinear Anal. T.M.A, 59, 173-188, (2004). DOI: https://doi.org/10.1016/S0362-546X(04)00254-8

X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal. T.M.A, 52, 1843-1852, (2003). DOI: https://doi.org/10.1016/S0362-546X(02)00150-5

X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl, 312, 464-477, (2005). DOI: https://doi.org/10.1016/j.jmaa.2005.03.057

A. Ferrero, G. Warnault, On a Solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal. T.M.A, 70, 2889-2902, (2009). DOI: https://doi.org/10.1016/j.na.2008.12.041

El Khalil, A., El Moumni, M., Alaoui, M. D. M., Touzani, A, p(x)-biharmonic operator involving the p(x)-Hardy inequality . Georgian Mathematical Journal, (2018).

I. H. Kim, Y.H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents , Manuscripta Math. 147, 169-191, (2015). DOI: https://doi.org/10.1007/s00229-014-0718-2

O. Kovacik, J. Rakosnik, On spaces Lp(x) and W1,p(x) , Czechoslovak Math, J.41 ,592-618, (1991). DOI: https://doi.org/10.21136/CMJ.1991.102493

L. Li, C. L. Tang, Existence and multiplicity of solutions for a class of p(x)-biharmonic equations, Acta Mathematica Scientia, 33, 155-170, (2013). DOI: https://doi.org/10.1016/S0252-9602(12)60202-1

V. Rˇadulescu, D. Repovˇs, Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC Press, Taylor and Francis Group, Boca Raton FL, (2015).

M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, SpringerVerlag, Berlin, (2000). DOI: https://doi.org/10.1007/BFb0104029

Szulkin, Ljusternik-Schnirelmann theory on C1 -manifolds, Ann. Inst. H. Poincare Anal. Non Lin´eaire 5 , 2, 119-139, (1988). DOI: https://doi.org/10.1016/s0294-1449(16)30348-1

S. Taarabti, Z. El Allali and K. Ben Hadddouch, Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions, Bol. Soc. Paran. Mat, 36, 195-213, (2018). DOI: https://doi.org/10.5269/bspm.v36i1.31363

A. Zang , Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal, 69.10, 3629-3636, (2008). DOI: https://doi.org/10.1016/j.na.2007.10.001

E. Zeidler, Nonlinear function analysis and its applications, Nonlinear Monotone Operators,vol. II/B, Springer, New York, (1990). DOI: https://doi.org/10.1007/978-1-4612-0981-2

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv, 9, 33-66, (1987). DOI: https://doi.org/10.1070/IM1987v029n01ABEH000958

Qing-Mei Zhou , Jian-Fang Wu, Existence of solutions for a class of quasilinear degenerate p(x)-Laplace equations, Electronic Journal of Qualitative Theory of Differential Equations, 69, 1-10, ( 2018). DOI: https://doi.org/10.14232/ejqtde.2018.1.69

Publicado
2022-12-28
Seção
Artigos