Nontrivial solutions for a general p(x)-Laplacian Robin problem
Resumo
We establish the existence of multiple nontrivial solutions for a class of $p(x)$-Laplacian Robin problem. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with
adequate variational methods and a variant of the Mountain Pass lemma.
Downloads
Referências
M. Allaoui and A. R. El Amrouss, Solutions for Steklov boundary value problems involving p(x)-Laplace operators, Bol. Soc. Paran. Math., 32(2014), 163-173.
M. Allaoui, A. R. El Amrouss, F. Kissi and A. Ourraoui, Existence and multiplicity of solutions for a Robin problem, J. Math. Comput. Sci., 10 (2014), 163-172.
M. Allaoui, A. R. El Amrouss and A. Ourraoui, Existence results for a class of p(x)-Laplacian problems in RN , Comput. Math. Appl., 69 (2015) 582-591.
J. Chabrowski and Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604-618.
Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 1383-1406.
S. G. Dend, Q. Wang and S. J. Cheng,On the p(x)-Laplacian Robin eigenvalue problem, Appl. Math. Comput., 217 (2011), 5643-5649.
S. G. Dend, A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations, Appl. Math. Comput., 211 (2009), 234-241.
S. G. Dend, Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl. 360 (2009) 548-560.
X. Ding and X. Shi, Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem, Nonlinear. Anal., 70(2009), 3713-3720.
X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x) , J. Math. Anal. Appl. 262 (2001), 749-760.
N. Tsouli, M. Haddaoui and ELM Hssini,Multiple Solution for a Critical p(x)-Kirchhoff Type Equations, Bol. Soc. Paran. Mat.(3s.) v. 38 4 (2020): 197-211.
X. L. Fan, D. Zhao, On the spaces Lp(x) and W m,p(x), J. Math. Anal. Appl. 263 (2001), 424-446.
X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003) 1843-1852.
M. Ruzicka, Electrorheological fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
L. L. Wang, Y. H. Fan and W. G. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear. Anal., 71 (2009), 4259-4270.
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987) 33-66.
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).