Geometric properties of an integral operator associated with Mittag-Leffler functions

Resumo

The main object of this paper is to introduce a new integral operator associated with Mittag-Leffler function. Further, we obtain some sufficient condition for this integral operator belonging to certain classes of starlike functions.

Downloads

Não há dados estatísticos.

Biografia do Autor

Saurabh Porwal, Ram Sahai Goverment Degree College, Bairi-Shivrajpur, Kanpur

Department of Mathematics

Nanjundan Magesh, Govt Arts College

Post-Graduate and Research Department of Mathematics

Referências

M. Arif and M. Raza, Some properties of an integral operator defined by Bessel functions, Acta Univ. Apulensis, 26(2011), 69-74.

D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61(3) (2016), 338-350.

E. Deniz, H. Orhan and H.M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math., 15(2011), 883-917.

B. A. Frasin, Sufficient condition for integral operator defined by Bessel functions, J. Math. Inequal., 4(3) (2010), 301-306.

N. Magesh, S. Porwal and S.P. Singh, Some geometric properties of an integral operator involving Bessel functions, Novi Sad J. Math., 47(2) (2017), 149 - 156.

S. Mahmood, H.M. Srivastava, S.N. Malik, M. Raza, N. Shahzadi and S. Zainab, A certain family of integral operators associated with the Struve functions, Symmetry, 11(2019), Art. ID 463, 1-16.

G. M. Mittag-Leffler, Sur la nouvelle function E(x), C. R. Acad. Sci. Paris, 137 (1903), 554-558.

S. Porwal and D. Breaz, Mapping properties of an integral operator involving Bessel functions, Analytic Number Theory, Approximation Theory and Spect. Funct., 821-826, Springer, New York, (2014).

S. Porwal and M. Kumar, Mapping properties of an integral operator involving Bessel functions on some sub- classes of univalent functions, Afr. Mat., 28(1-2)(2017), 165-170

S. Porwal, A. Gupta and G. Murugasundaramoorthy, New sufficient conditions for starlikeness of certain integral operators involving Bessel functions, Acta Univ. Math. Beli, series Math., (2017), 10-18.

M. Raza, S. Noreen and S.N. Malik, Geometric properties of integral operators defined by Bessel functions, J. Ineq. Spec. Funct., 7(2016), 34-48.

M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), no. 2, 374{408.

H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109{116.

H. Shiraishi and S. Owa, Starlikeness and convexity for analytic functions concerned with Jack's Lemma, Int. J. Open Problem Comput. Math., 2(1) (2009), 37-47.

H. M. Srivastava, B. A. Frasin and V. Pescar, Univalance of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11(3) (2017), 635-641.

A. Wiman, Uber den fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 29(1905), 191-201.

A. Wiman, Uber die Nullstellum der Funcktionen E(x), Acta Math., 29(1905), 271-234.

Publicado
2024-05-03
Seção
Artigos