Multiplicative b-generalized derivations on prime ideals

  • Muzibur Rahman Mozumder Aligarh Muslim University
  • Shakir Ali Aligarh Muslim University
  • Wasim Ahmed Aligarh Muslim University
  • Adnan abbasi Aligarh Muslim University

Abstract

The aim of this manuscript is to investigate the relationship between the behaviour of multiplicative b-generalized derivations and the commutativity of quotient ring. In particular, we study certain algebraic identities like F(z) ± z ∈ P for all z ∈ R, without considering the primeness of R.

Downloads

Download data is not yet available.

Author Biography

Shakir Ali, Aligarh Muslim University

Associate Professor in the department of mathematics in Aligarh Muslim University, India 

References

F. A. Ahmed Almahdi, A. Mamouni and M. Tamekkante, A generalization of Posner’s theorem on derivations in rings, Indian J. Pure Appl. Math. 51, no.1, 187-194, (2020).

A. Ali, B. Dhara, S. Khan and F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. and Stat. 44, no.6, 1293-1306, (2015).

M. Ashraf, A. Ali, S. Ali, Some commutativity theorem for prime rings with generalized derivations, Southeast Asian Bull. Math. 31, 415-421, (2007).

Beidar K. I., Martindale III W. S. and Mikhalev A. V., Rings with Generalized Identities, Pure Appl. Math. Dekker, New york, (1996).

J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math 35, no.2, 300-310, (1983).

V. De Filippis, and F. Wei, b-generalized skew derivations on Lie ideals, Mediterr. J. Math. 15, no.2, https://doi.org/10.1007/s00009-018-1103-2, (2018).

B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Int. J. Math. and Math. Sci., 646587(6 pages), (2010).

B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86, 65-79, (2013).

I. N. Herstein, A note on derivations, Can. Math. Bull. 21, 369-370, (1978).

Herstein I. N., Topics in Ring Theory, University of Chicago Press, London (1969).

M. T. Ko¸san and T. K. Lee, b-generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc. 96, no.3, 326-337, (2014).

C. Lanski, Differential identities, Lie ideals and Posner’s theorems, Pacific J. Math. 134, no.2, 275-297, (1988).

P. K. Liau and C. K. Liu, An Engel condition with b-generalized derivations for Lie ideals, J. Algebra App. 17, no.3, 1850046(17 pages), (2018).

C. K. Liu, An Engel condition with b-generalized derivations, Linear Multilinear Algebra 65, no.2, 300-312, (2017).

A. Mamouni, L. Oukhtite and M. Zerra, On derivations involving prime ideals and commutativity in rings, Sao Paulo J. Math. Sci., DOI: 10.1007/s40863-020-00187-z, (2020).

A. Mamouni, L. Oukhtite and M. Zerra, Prime ideals and generalized derivations with central values on rings, Rendiconti del Circolo Matematico di Palermo Series 2, https://doi.org/10.1007/s12215-020-00578-3, (2020).

E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, (1957).

Published
2025-07-03
Section
Articles