Neutrosophic G - Co-compactness and Neutrosophic G - Co-paracompactness
Abstract
ABSTRACT: The aim of this paper is to introduce and investigate a new type of compactness, namely co-compactness via grills in neutrosophic topological space or simply neautrosophic G - co-compactness and neautrosophic G - co-paracompactness via grills of a neutrosopic topological space (X, T). Some basic properties of these new types of compactness will be established in neutrosophic topological space using grills. Also the relationships among the various forms of compact spaces would be obtained.
Downloads
References
1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96, (1986).
2. G. Choquet, Sur les notions de Filtre et grille, Computes Rendus Acad. Aci. 224, 171173, (1947).
3. R. Das and B. C. Tripathy, Neutrosophic multiset topological space, Neutrosophic Sets and Systems 35, 142-152, (2020).
4. S. Das and B. C. Tripathy, Pairwise neutrosophic-b-open set in neutrosophic bitopological spaces, Neutrosophic Sets and Systems 38, 135-144, (2020).
5. A. Karthika, I. Arockiarani, A note on Co-compactness and Co-paracompactness via Grills, International Journal of Computer Application 5 (3), 12-20, (2013).
6. A. S. Mashhour, R. H. Atia, New generalization of Compactness part II: On Paracompactness, Bull. Fac. Sci. Assiut Univ. 3, 395-399, (1974).
7. G. Pal, R. Dhar, B. C. Tripathy, Minimal Structures and Grill in Neutrosophic Topological Spaces, Neutrosophic Sets and Systems (accepted).
8. G. Pal, B. C. Tripathy, R. Dhar, R, On Continuity in Minimal Structure Neutrosophic Topological Space. Neutrosophic Sets and Systems (accepted).
9. A. A. Salama, S. A. Alblowi, Neutrosophic set and neutrosophic topological space, ISOR J Math 3(4), 31-35, (2012a).
10. A. A. Salama, S. A. Alblowi, Generalized neutrosophic set and generalized neutrosophic topological space, Comp. Sci. Engg. 21, 29-132, (2012b).
11. A. A. Salama, F. Smarandache, S. A. Alblowi, New neutrosophic crisp topological concepts, Neutrosophic Sets and Systems 2, 50-54, (2014).
12. F. Smarandache, Neutrosophic set: a generalization of the intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics 24, 287-297, (2005).
13. M. K. Singal, A. Rani, Asha, On almost - m-compact spaces, Annales de la Societe. scientifique de Bruxelles 82, 233-242, (1968).
14. B. Roy, M. N. Mukherjee, 2007. On a type of Compactness via grills, Math. Vesnik 59, 113-120, (2007).
15. B. Roy, M. N. Mukherjee, A generalization of paracompactness in terms of grills, Math. Commun. 14 (1), 75-83, (2009).
16. L. A. Zadeh, Fuzzy sets, Information and Control 8, 338-353, (1965).
Copyright (c) 2025 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).



