Three weak solutions for a class of quasilinear choquard equations involving the fractional p(x, .)-Laplacian operator with weight
Abstract
In this paper, we establish the existence of at least three weak solutions to a problem involving the the fractional p(x, .)- Laplacian operator with weight. Our method used for obtaining the existence of three solutions for a class of Choquard equations is based on the variational method concerned a type of version of Ricceri.
Downloads
References
C. O. Alves, V. Radulescu , L. S. Tavares., Generalized Choquard equations driven by nonhomoge-neous operators, Mediterr J Math. 16-20, (2019).
C. O. Alves, Tavares LS., A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to Quasilinear Choquard equations involving variable exponent, Meditterr J Math. 16(2), 55(2019).
E. Azroul, A. Benkirane, M. Shimi., Eigenvalue problems involving the fractional p(x)-Laplacian operator, Adv. Oper. Theory4, 539-555, (2019).
E. Azroul, A. Benkirane, M. Shimi and M. Srati., Three solutions for fractional p(x, .)-Laplacian Dirichlet Problems with weight. J. Nonlinear Funct. Anal, (2020).
I. Aydin., Weighted Variable Sobolev Spaces and Capacity, J. Funct. Spaces Appl. Article ID 132690, (2012).
A. Bahrouni, V. Radulescu., On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. 11, 379-389, (2018).
R. Biswas and S. Tiwari., Variable order nonlocal Choquard problem with variable exponents, Complex Variables and Elliptic Equations.1747-6933(Print)1747-6941(Online), (2020).
Y. Chen, S. Levine, M. Rao., Variable exponent, linear growth functionals in image processing, SIAMJ. Appl. Math. 66, 1383-1406, (2006).
N. T Chung and H. Q. Toan., On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collectanea Math. 71, 223-237, (2019).
D. Cruz-Uribe, L. Diening, P. Hasto., The maximal operator on weighted variable Lebesgue spaces, Frac. Calc. Appl. Anal. 14, 361-374, (2011).
S. G. Deng., A local mountain pass theorem and applications to a double perturbed p(x)-laplacian equations, J. Applied Mathematics and computation 211, 234-241, (2009).
X. L. Fan, S. G. Deng., Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations, J. Nonlinear Anal 67, 3064-3075, (2007).
X. L. Fan, D. Zhao., On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263, 424-446, (2001).
A. El Amrouss and A. Ourraoui., Existence of solutions for a boundary problem involving p(x)-biharmonic operator, Bol. Soc. Paran. Mat. (3s.) v. 31 1, 179–192, (2013).
U. Kaufmann,J. D. Rossi,R. Vidal., Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ Equ.76; 1-10, (2017)
O. Kovacik , J. Rakosnik., On spaces Lp(x)(Ω) and W m,p(x)(Ω), Czechoslovak Math. J. 41, 592-618, (1991).
M. Rauzicka., Electrorheological fluids: modeling and mathematical theory, In: Lecture Notes in Mathematics, Vol.1748. Springer, Berlin, 2000.
V. V. Zhikov., Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 9, 33-66, (1987).
Copyright (c) 2024 Boletim da Sociedade Paranaense de Matemática

This work is licensed under a Creative Commons Attribution 4.0 International License.
When the manuscript is accepted for publication, the authors agree automatically to transfer the copyright to the (SPM).
The journal utilize the Creative Common Attribution (CC-BY 4.0).