Nonlinear elliptic problems involving the generalized p(u)-Laplacian operator with Fourier boundary condition

Résumé

This paper considers the existence of entropy solutions for some generalized elliptic p(u)-Laplacian problem with Fourier boundary conditions, when the variable exponent p is a real continuous function and we have dependency on the solution u. We get the results by assuming the right-hand side function f to be an integrable function, and by using the regularization approach combined with the theory of Sobolev spaces with variable exponents.

Téléchargements

Les données sur le téléchargement ne sont pas encore disponible.

Références

A. Abbassi, C. Allalou, A. Kassidi, Existence of Entropy Solutions for Anisotropic Elliptic Nonlinear Problem in Weighted Sobolev Space, In The International Congress of the Moroccan Society of Applied Mathematics. Springer, Cham, pp. 102-122 (2019). DOI: https://doi.org/10.1007/978-3-030-62299-2_8

A. Abbassi, C. Allalou, A. Kassidi, Anisotropic Elliptic Nonlinear Obstacle Problem with Weighted Variable Exponent, J. Math. Study, 54(4), 337-356 (2021). DOI: https://doi.org/10.4208/jms.v54n4.21.01

A. Abassi, A. El Hachimi, A. Jamea, Entropy solutions to nonlinear Neumann problems with L1-data, Int. J. Math. Statist 2 (2008): 4-17.

Y. Akdim, C. Allalou, N. El Gorch, M. Mekkour, Obstacle problem for nonlinear p(x)-parabolic inequalities, In AIP Conference Proceeding, Vol. 2074, No. 1, p.020018, AIP Publishing LLC, (2019). DOI: https://doi.org/10.1063/1.5090635

B. Andreianov, M. Bendahmane, S. Ouaro, Structural stability for variable exponent elliptic problems. II. The p(u)- Laplacian and coupled problems, Nonlinear Anal. 72(12), 4649-4660 (2010). DOI: https://doi.org/10.1016/j.na.2010.02.044

E. Azroul, M. B. Benboubker, S. Ouaro, Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized p(x)-Laplace operator, J. Appl. Anal. Comput 3.2 (2013): 105-121. DOI: https://doi.org/10.11948/2013009

E. Azroul, F. Balaadich, Generalized p(x)-elliptic system with nonlinear physical data, Journal of Applied Analysis and Computation 10.5 (2020): 1995-200 DOI: https://doi.org/10.11948/20190309

P. Benilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, J. L. Vazquez, An L1−theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), 241-273.

P. Blomgren, T. Chan, P. Mulet, C. Wong, Total variation image restoration: Numerical methods and extensions. In: Proceedings of the IEEE International Conference on Image Processing, vol. 3, 384-387. IEEE Computer Society Press, Piscataway (1997).

E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz, K. Vixie, Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion, Adv. Comput. Math. 31, 61-85 (2007). DOI: https://doi.org/10.1007/s10444-008-9082-7

C. Allalou, K. Hilal, S. Ait Temghart, Existence of weak solutions for some local and nonlocal p-Laplacian problem. Journal of Elliptic and Parabolic Equations, 1-19 (2022). DOI: https://doi.org/10.1007/s41808-021-00143-8

M. Chipot, H. B. de Oliveira, Some Results On The p(u)-Laplacian Problem, Mathematische Annalen (2019). DOI: https://doi.org/10.1007/s00208-019-01803-w

A. Jamea, A. Sabri, H. T. Alaoui, Entropy solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces, Le Matematiche 76.1 (2021): 109-131.

O. Kovacık, and J. R´akosnık, On spaces Lp(x) and Wk,p(x), Czechoslovak Mathematical Journal 41.116 (1991): 592-618. DOI: https://doi.org/10.21136/CMJ.1991.102493

N. G. Meyers, and J Serrin, H=W, Proc. Nat. Acad. Sci USA 51 (1964): 1055-1056. DOI: https://doi.org/10.1073/pnas.51.6.1055

D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, 267-293. DOI: https://doi.org/10.4064/sm-143-3-267-293

N. Ouaro, N. Sawadogo, Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition, CUBO A Mathematical, Vol.22, No 01, 85-124 (2020). DOI: https://doi.org/10.4067/S0719-06462020000100085

N. Ouaro, N. Sawadogo, Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition, Gulf Journal of Mathematics 11.1 (2021): 1-37. DOI: https://doi.org/10.56947/gjom.v11i1.665

V. Calogero, The Existence of Solutions for Local Dirichlet (r(u), s(u))-Problems, Mathematics 10.2 (2022): 237. DOI: https://doi.org/10.3390/math10020237

J. Turola, Image denoising using directional adaptive variable exponents model, J. Math. Imaging. Vis. 57, 56-74 (2017). DOI: https://doi.org/10.1007/s10851-016-0666-4

C. Zhang, X. Zhang, Some further results on the nonlocal p−Laplacian type problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 151(3), 953-970 (2021). DOI: https://doi.org/10.1017/prm.2020.45

Publiée
2022-12-27
Rubrique
Articles