Analyticity for the fractional Navier-Stokes equations in critical Fourier-Besov-Morrey Spaces with variable exponents

Abstract

In this paper, by using the Littlewood-Paley theory and the Fourier localization argument, we obtained the analyticity of the solution to the fractional Navier-Stokes equations in variable exponents Fourier-Besov-Morrey spaces when the initial data are small.

Downloads

Download data is not yet available.

Author Biographies

Fatima Ouidirne, Sultan Moulay Slimane University

Laboratory LMACS

Chakir Allalou, Sultan Moulay Slimane University

Laboratory LMACS

Mohamed Oukessou, Sultan Moulay Slimane University

Laboratory LMACS

References

Abbassi, A., Allalou, C., Oulha, Y., Well-posedness and stability for the viscous primitive equations of geophysics in critical Fourier-Besov-Morrey spaces, The International Congress of the Moroccan Society of Applied Mathematics, 123-140, (2019).

Abidin, M. Z., Chen, J., Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in FourierBesov- Morrey Spaces with Variable Exponent, Mathematics, 9, 498, (2021).

Abidin, M. Z., Chen, J., Global well-posedness for fractional Navier-Stokes equations in variable exponent FourierBesov-Morrey spaces, Acta Mathematica Scientia, 41B(1), 164-176, (2021).

Abidin, M. Z., Shaolei, R., Global well-posedness of the incompressible fractional Navier-Stokes equations in FourierBesov spaces with variable exponents, Computers and Mathematics with Applications (2018).

Almeida, A., Caetano, A., Variable exponent Besov-Morrey spaces, J. Fourier. Anal. Appl. 26, 5 (2020).

Almeida, A., Hästö, P., Besov spaces with variable smoothness and integrability, J. Funct. Anal. 258(5), 1628-1655 (2010).

Almeida, A., Hasanov, J., Samko, S., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J.15(2), 195-208 (2008).

Almeida, M.F., Ferreira, L.C.F., Lima, L.S.M., Uniform global well-posedness of the Navier-Stokes-Coriolis system in a new critical space, Math. Z. 287, 735-750 (2017).

Azanzal, A., Allalou, C., Abbassi, A., Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier-Besov-Morrey spaces, J. Nonlinear Funct. Anal. Article ID 24, (2021).

Azanzal, A., Abbassi, A., Allalou, C., On the Cauchy problem for the fractional drift-diffusion system in critical Fourier-Besov-Morrey spaces, International Journal On Optimization and Applications, 1, p-28, (2021).

Bae, H., Biswas, A., Tadmor, E., Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal. 205, 963-991, (2012 ).

Bourgain, J., Pavlović, N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal of Functional Analysis, 255(9), 2233-2247 (2008).

Cannone, M., Wu, G., Global well-posedness for Navier-Stokes equations in critical Fourier- Herz spaces, Nonlinear Anal., 75 (2012).

Charve, F., Ngo, V., Global existence for the primitive equations with small anisotropic viscosity, Rev. Mat. Iberoam. 2, 1-38, (2011).

Cannone M., Paraproduits et Navier-Stokes Diderot Editeur. Arts et Sciences, (1995).

Deng, C., Yao, X., Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in F −α 3/(α−1),q Dynamical Systems, 34(2): 437-459, (2014).

El Baraka, A., Toumlilin, M., Global Well-Posedness for Fractional Navier-Stokes Equations in critical Fourier-BesovMorrey Spaces, Moroccan J. Pure and Appl. Anal. 3.1, 1-14, (2017).

El Baraka, A., Toumlilin, M., Uniform well-Posedness and stability for fractional Navier- Stokes Equations with Coriolis force in critical Fourier-Besov-Morrey Spaces, Open J. Math. Anal. 3(1), 70-89, (2019).

Ferreira, L. C., Lima, L. S., Self-similar solutions for active scalar equations in Fourier-Besov-Morrey spaces, Monatshefte für Mathematik, 175(4), 491-509 (2014).

Foias, C., Temam, R., Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989) 359-369.

Fu, J., Xu, J., Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents, J.Math. Anal. Appl. 381, 280-298(2011).

Fujita, H., Kato, T., On the Navier-Stokes initial value problem, I. Arch. Rational Mech. Anal. 16(4), 269-315 (1964).

Iwabuchi, T., Takada, R., Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 267.5, 1321-1337, (2014).

Koch, H., Tataru D., Well-posedness for the Navier-Stokes equations. Advances in Mathematics, 157(1), 22-35 (2001 ).

Lei, Z., Lin, F., Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64.9, 1297-1304, (2011).

Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica, 63, 193-248 (1934).

Li, P., Zhai, Z., Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces, Journal of Functional Analysis, 259(10): 2457-2519, (2010).

Masuda, K., On the analyticity and the unique continuation theorem for Navier-Stokes equations, Proc. Japan Acad. Ser. A Math. Sci. 43 827-832, (1967).

Mazzucato, A., Besov-Morrey spaces, function space theory and applications to nonlinear PDE, Trans. Am. Math. Soc. 355, 1297-1364 (2003).

Wang, W., Global well-posedness and analyticity for the 3D fractional magneto-hydrodynamics equations in variable Fourier-Besov spaces, Z. Angew. Math. Phys. (2019).

Wang, W., Wu, G., Global mild solution of the generalized Navier-Stokes equations with the Coriolis force, Appl. Math. Lett. 76, 181-186 (2018).

Xiao J., Homothetic variant of fractional Sobolev space with application to Navier-Stokes system revisited, Dyn Partial Differ Equ, 11(2): 167-181, (2014).

Yu, X., Zhai, Z., Well-posedness for fractional Navier-Stokes equations in critical spaces close to B˙ −(2β−1) ∞,∞ (R n), Math Method Appl Sci, 35(6): 676-683, (2012 ).

Yu, X., Zhai, Z., Well-posedness for fractional Navier-Stokes equations in the largest critical spaces, Comm Pure Appl Anal, 11(5): 1809-1823, (2012 ).

Zoran, G., Igor, K., Space analyticity for the Navier-Stokes and Related Equations with Initial Data in Lp, journal of functional analysis 152, 447-466 (1998).

Published
2024-05-02
Section
Articles