On algebraic independence of some continued fractions

Resumo

In the present paper, we prove the algebraic independence of a finite number of real continued fractions which have partial quotients that increase rapidly. We then use a general Liouville criteria to justiy the algebraic independence of limits of some real series. We note that these results extend some work of Bundschuh and we use a new and simple method.

Downloads

Não há dados estatísticos.

Biografia do Autor

Dr Ali Kacha, Ibn Tofail University

Department of Mathematics

Sarra Ahallal, Ibn Tofail University

Department of Mathematics

Referências

Adams, W. W., The algebraic independence of certain Liouville continued fractions, Proc. Amer. Math. Soc., 95(4), 521-516, (1985).

Belhroukia K. and Kacha, A., Transcendence and approximation measure of continued fraction, Int. J. Open Problems Compt. Math., 11(4), 1-14, (2018).

Bundschuh,P., Transcendental continued fractions, J. Number Theory 18, 91-98, (1984).

Durand, A., Indépendance algébrique de nombres complexes et critères de transcendance, compositio. Math. 35, 259-267, (1977).

Kacha, A., Approximation algébrique de fractions continues, C R. Acad. Sci. Paris, t. 317, Série I, 17-20, (1993).

Karadeniz Gozeri, G., Ayetin Pekin and Adem Kilicman, On the transcendence of some power series, Adv. Differ. Equ 17, 1-8, (2013).

Lianxiang, W., p-adic continued fraction (II), Scientia Sinica Ser. A, 28(10), 1018-1028, (1985).

Liouville, J., Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, C. R. Mat. Acad. Sci. Paris 18, 883-885, 910-911, (1844).

Lorentzen, L., Wadeland, H., Continued fractions with Applications, Elsevier Science Publishers, (1992).

Nettler, G., Transcendental continued fractions, J. Number Theory 13, 456-462, (1981).

Okano, T., A note on the transcendental continued fractions, Tokyo J. Math.,10(1), 151-156, (1987).

K. F. Roth, K. F., Rational approximations to algebraic numbers, Mathematika, Vol 2, 1-20, (1955).

T. Schneider, T., Uber p-adich Kettenbruche, Symposia math. Vol. IV, 181-189, (1976).

Publicado
2024-05-20
Seção
Artigos